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1. The Issue of Multiple Equilibria

Characterization of multiple equilibria
In general, the WG will have multiple equilibria, as in Chamley (2004). There is now the

possibility of a new regime in which all type-1 agents invest in round 1 and type-0 agents mix
in round 1. We call this Regime 2M, which is a sort of “reverse” to Regime M. Let p be the
probability that a type-0 agent invests in round 1, and V0(μ0, p) be the expected payoff of a
type-0 agent who waits in round 1. Similar to the proof of Lemma (3.1), it can be shown that
V0(μ0, p) is decreasing in p, and the advantage of investing right away to waiting in round 1,
μ0 − c − V0(μ0, p) is increasing in μ0. This is because as type-0 agents invest with a higher
probability (type-1 agents invest for sure) in round 1, less information is revealed by round 1
investment, since the two types of agents’ behavior become closer to each other. An equilibrium
of Regime 2M is characterized by a p such that μ0 − c− V0(μ0, p) = 0.

A complete characterization of equilibria in the WG is as follows. (1) If μ < μW , there is a
unique equilibrium of Regime 0. (2) If μW ≤ μ < min{bμW , μNW}, there is a unique equilibrium
of Regime M. (3) If μ > μW , there is a unique equilibrium of Regime 2. Suppose μNW > bμW ,
then we have two more cases. (4) If bμW < μ < μNW , there is a unique equilibrium of Regime 1.
To see this, note that μ < μNW implies that type-0 agents have no incentive to invest in round 1,
thus Regime 2 and 2M do not exist. On the other hand, bμW < μ ensures that all type-1 agents
invest in round 1, so Regime 1 exists. (5) If μNW < μ < μW , then there are three equilibria:
Regime 1, Regime 2M, and Regime 2. Regime 2 exists because if all other agents invest in round
1, then nothing is learned by waiting and it is optimal for an agent to invest in round 1. To see
that Regime 2M exists, note that by μNW < μ we have μ0− c−V0(μ0, 1) = (1− δ)(μ0− c) > 0.
By μ < μW , we have μ0 − c− V0(μ0, 0) < 0. Since V0(μ0, p) is decreasing in p, we must have a
unique p ∈ (0, 1) such that μ0−c−V0(μ0, p) = 0. Suppose μNW < bμW , then case (4) and (5) will
change. (4’) If μNW < μ < bμW , there are three equilibria: Regime M, Regime 2M, and Regime
2. (5’) If bμW < μ < μW , there are three equilibria: Regime 1, Regime 2M and Regime 2. The
reason for the multiplicity of equilibria is that if type-0 agents invest with a higher probability
in round 1, then less information is revealed in round 1 and agents have less incentive to wait.

We now discuss the implications of the equilibrium refinement, payoff dominance. In case (5)
Regime 1 is payoff dominant. In case (4’) Regime M is payoff dominant and in case (5’) Regime
1 is payoff dominant. Since the arguments are similar for all the cases, here we just demonstrate
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it for case (4’). First compare Regime M and Regime 2. Type-1 agents get the same payoff in
both Regimes, since in Regime M type-1 agents are indifferent between waiting and investing
in round 1. But type-0 agents get a higher payoff in Regime M. This is because they have no
incentive to invest in round 1 in regime M, which means that waiting yields a higher payoff than
investing right away. Now compare Regime M and Regime 2M. Type-1 agents get the same
payoff in both Regimes. However, type-0 agents get a higher payoff in Regime M. The reason is
that they have no incentive to invest in round 1 in Regime M, implying waiting yields a higher
payoff than investing right away, while in regime 2M, they are indifferent between waiting and
investing.

Thus, imposing payoff dominance, the equilibrium is characterized by Proposition 3.2.1

Long-run dynamics in the large, persistent economy in the "maximal-coordination-
failure" equilibrium

Suppose we select Regime 2 whenever it coexists with other equilibria. Then based on this
criterion, like Proposition (3.2), the equilibrium can be characterized as follows: (i) Regime 0 if
μ ∈ [0, μNW ]; (ii) Regime 2 if μ ∈ [μNW , 1]; (iii) Regime M if μ ∈ (μNW ,min{μNW , bμW )]; (iv)
Regime 1 if μ ∈ (min{μNW , bμW ), μNW ]. Note that Regime 1 might not exist if μNW ≤ bμW .

As we can see, the range of beliefs corresponding to Regime 0 in the WG is still the same
as in the NWG. But now the range of beliefs corresponding to Regime 2 in the WG is the
same as in the NWG. For sufficiently high persistence, when a Regime 0 cascade ends, the
economy moves into Regime M with type-1 agents investing with a low probability (beliefs are
just slightly higher than μNW ). When a Regime 2 cascade ends, there are two possible cases.
(Case 1: μNW ≥ bμW ) If agents are not too patient, the economy moves into Regime 1, and the
transition from booms is exactly the same as in the NWG, so we have longer recessions and
booms of the same length as in the NWG. As a result, the average length of recessions is longer
in the WG than in the NWG, and the economy spends a greater fraction of time in recessions in
the WG than in the NWG. This shows that the results in section 4.3 regarding the comparison
of the long-run dynamics across two games are robust. (Case 2: μNW ≤ bμW ) If agents are
sufficiently patient, the economy moves into Regime M, which could possibly delay the end of
a boom. However, it is our strong conjecture that the economy spends a greater fraction of
time in recessions in the WG than in the NWG, because the rate of information flow when we
transition from Regime 2 to Regime M is significant, while the rate of information flow when we
transition from Regime 0 to Regime M is approximately zero.

2. More Detailed Analysis of the Large, Persistent Economy (Section 4)

All of our simulations indicate that investment cycles have longer recessions and shorter
booms in the WG than in the NWG. While we conjecture that this is a general result, the
nonstationary nature of the dynamics makes proving this result impossible (at least, for us).
However, in this section we derive analytical results for the important case of the large, persistent

1The Regime 2M equilibria can also be eliminated as not being stable. Consider perturbations around type-0
agents’ equilibrium investment probability p∗. If p is slightly higher than p∗, then μ0 − c − V0(μ0, p) > 0 since
μ0−c−V0(μ0, p

∗) = 0 and V0(μ0, p) is decreasing in p. Thus each type-0 agent has incentive to increase p further,
which makes Regime 2M instable. Similarly, one can show that if p < p∗, then each type-0 agent has incentive
to further decrease p. On the other hand, the Regime M equilibrium is stable, which can be shown by similar
arguments.
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economy. We consider the limiting case in which n→∞, ρ→ 1, and the order of limits is such
that n→∞ for any value of ρ. We will argue that this allows us to characterize the equilibria of
the NWG and the WG as finite-state Markov processes, from which we can study the long run
probabilities of boom and recession. Intuitively, large n allows us to use the law of large numbers,
thus getting rid of the randomness of beliefs in Regime 1 and Regime M. Meanwhile, large n
also leads to nice cutoffs in the WG as shown by Lemma (3.5). Large ρ makes belief transitions
across periods (in either Regime 0 or Regime 2) smoothly and guarantees that Regime 1 and
Regime M occur when beliefs first cross the boundaries.

The Large, Persistent NWG The economy can be represented by rNW +2+ bNW Markov
states. Regime 0 has rNW states (state 1 to state rNW ). Regime 1 has two states: state
rNW +1 (corresponding to a low investment return) and state rNW +2 (corresponding to a high
investment return). Regime 2 has bNW states (state rNW + 3 to state rNW + 2 + bNW ).

Since n → ∞, by the law of large numbers, in Regime 1 the investment return is always
fully revealed. Therefore, if the economy is in Markov state rNW +1, in the following period the
economy will be in state 1 (corresponding to the beginning of Regime 0) for sure, with initial
belief 1−ρ. Similarly, state rNW+2 transitions to state rNW+3 (corresponding to the beginning
of Regime 2) for sure, with inital belief ρ. From state 1, the economy transitions through rNW

states of Regime 0 deterministically, until state rNW is reached. State rNW transitions to Regime
1 with probability one. Specifically, it transitions to state rNW + 1 with probability 1 − pNW ,
which is the probability of the investment return being low after rNW periods, given that it
was low initially; and it transitions to state rNW + 2 with probability pNW . Similarly, once the
economy reaches state rNW +3, it transitions through bNW states of Regime 2 deterministically,
until state rNW +2+ bNW is reached. State rNW +2+ bNW transitions to either state rNW +1
or state rNW + 2. The probability of transitioning to state rNW + 2, denoted by pNW , is the
probability of the investment return being high after bNW periods, given that it was high initially.

Note that the stationarity of the processes is guaranteed by the law of large numbers, as the
investment return is fully revealed in regime 1. We summarize the state transitions in the NWG
in the following transition probability matrix PNW (from top to bottom rows and from left to
right columns are state 1 to state rNW + 2 + bNW ).

PNW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1...

1
(1− pNW ) pNW

1
1
1
1...

1
(1− pNW ) pNW

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Since all of the Markov states are ergodic, we can calculate the stationary distribution of

states πNW (a row vector), which is defined as πNWPNW = πNW . Using standard techniques,
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the fraction of time the economy spends in booms, πNW
B , can be calculated as

πNW
B =

(bNW + 1)pNW

(rNW + 1)(1− pNW ) + (bNW + 1)pNW
, (1)

with the probability of recession equal to 1− πNW
B .

We can determine rNW (bNW ) by calculating the number of periods that must pass, in order
for the probability of the high investment return to first exceed μNW (fall below μNW ), given
that the investment return was low (high) initially. Thus, we have2

rNW =
log(1− 2μNW )

log(2ρ− 1) ; bNW =
log(2μNW − 1)
log(2ρ− 1) . (2)

Equations (2) indicate that the number of periods in Regime 0 and Regime 2 grow without
bound as ρ → 1, but the ratio converges to a well defined limit. We can compute the limiting
boom probability by noting that limρ→1(pNW ) = μNW and limρ→1(pNW ) = μNW , yielding3

πNW
B =

1

1 +
log(1−2μNW )

log(2μNW−1)

h
1−μNW

μNW

i . (3)

The Large, Persistent WG For the WG of the large, persistent economy, we want to show
that the dynamics are approximated by a first-order Markov process. Specifically, there are
rW +4+ bW Markov states. States 1 to rW correspond to Regime 0. Regime M has two states:
state rW + 1 (corresponding to a low investment return) and state rW + 2 (corresponding to
a high investment return). Regime 1 has two states: state rW + 3 (corresponding to a low
investment return) and state rW +4 (corresponding to a high investment return). States rW +5
to rW + 4 + bW correspond to Regime 2.

The state transitions are as follows. By the law of large numbers, state rW + 3 transitions
to state 1 for sure, and state rW + 4 transitions to state rW + 5 for sure. From state 1, the
economy goes through the rW states of Regime 0. State rW transitions to Regime M: to state
rW +1 with probability (1− pW ) and to state rW +2 with probability pW . From state rW +5,
the economy goes through the bW states of Regime 2. State rW +4+ bW transitions to Regime
1: to state rW + 3 with probability (1− pW ) and to state rW + 4 with probability pW .

Now we specify transitions from Regime M. From state rW + 1, with probability λ0 the
investment return is revealed to be low and the economy transitions to state 1; with probability
(1−λ0)ρ it remains in state rW +1 next period, and with probability (1−λ0)(1−ρ) it switches
to state rW + 2. Similarly, from state rW + 2, with probability λ1 the investment return is
revealed to be high and the economy transitions to state rW +5; with probability (1−λ1)(1−ρ)
it switches to state rW +1 next period, and with probability (1−λ1)ρ it remains in state rW +2.

2Of course, the expressions (2) are not generally integers, so rNW and bNW are actually the smallest integers
greater than or equal to the corresponding expressions.

3Clearly, if c = 1/2, then μNW = 1− μNW and bNW = rNW holds. By (3), we have πNW
B = πNW

R = 1/2. As
we will see, this symmetry of investment cycles for the symmetric model with c = 1/2 does not carry over to the
WG.
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The Markov transition matrix PW is summarized below (from top to bottom rows and from left
to right columns are state 1 to state rW + 4 + bW ):

PW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1...

1
(1− pW ) pW

λ0 (1− λ0)ρ (1− λ0)(1− ρ)
(1− λ1)(1− ρ) (1− λ1)ρ λ1

1
1

1
1...

1
(1− pW ) pW

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The law of large numbers guarantees that the investment return is revealed in Regime 1,

or if the economy is in Regime M and kt1 induces all remaining type-1 agents and no type-0
agents to invest in round 2. For ρ sufficiently close to one, it is clear that: when the investment
return is revealed to be high (low), then the following period is in Regime 2 (0); during the first
period that the economy leaves Regime 2, it is in Regime 1;4 and during the first period that the
economy leaves Regime 0, it is in Regime M. To finish our justification that PW is an accurate
approximation to the transition dynamics, we will show that for ρ sufficiently close to one, (i) in
Regime M, if one agent invests in round 1, kt1 = 1, then the remaining type-1 agents and none of
the type-0 agents will invest in round 2, thereby revealing the investment return, (ii) in Regime
M, the probability of more than one agent investing in round 1, kt1 > 1, is negligible, even as
compared to the already small probability that exactly one agent invests, and (iii) in Regime
M, the beginning of period beliefs are approximately constant, independent of the history.

It will be useful to define the following notation for the probabilities of aggregate round-1
investment in Regime M, given beginning of period beliefs, μ, and the investment return:

prk0(μ) ≡ pr(kt1 = k|St = 0) and prk1(μ) ≡ pr(kt1 = k|St = 1).

Also, based on the investment probability q (which implicitly depends on μ), we define Q(μ)
to be the ratio of the probability that no one invests when the investment return is low, to the
probability that no one invests when the investment return is high:

Q(μ) ≡ (1− (1− α)q

1− αq
)n. (4)

Lemma 4.1: For the large, persistent WG in Regime M, let the beginning of period belief be
given by μ(ht−1) = μ < 1. Then in the limit, as n → ∞, round-1 investment probabilities are
characterized as follows.

4Regime 2 and Regime 1 always exists (not bypassed) for fixed δ < 1 and ρ → 1. If δ → 1 as well, then to
ensure Regime 2 and Regime 1 exist the limiting ratio (1− δ)/(1− ρ) must be sufficiently large.
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pr00(μ) = Q(μ)−(1−α)/(2α−1)

pr10(μ) =

µ
1− α

2α− 1

¶
Q(μ)−(1−α)/(2α−1) log(Q(μ))

pr01(μ) = Q(μ)−α/(2α−1)

pr11(μ) =

µ
α

2α− 1

¶
Q(μ)−α/(2α−1) log(Q(μ))

Also, if n→∞ and μ→ μW , then Q(μ), pr00(μ), and pr01(μ) converge to one. Although the
probability of kt1 = 1 is converging to zero, the probability of kt1 > 1, relative to the probability
of kt1 = 1, also converges to zero.

If beliefs in Regime M are close to μW , Lemma (4.1) allows us to ignore the possibility of
more than one agent investing in round 1. Also, if kt1 = 1 holds, then from (??) and Lemma
(4.1), a type-1 agent finds it profitable to invest and a type-0 agent does not; thus, only the
remaining type-1 agents invest in round 2, thereby revealing the investment return. Lemma
(4.2) below completes our justification that PW is an accurate approximation to the transition
dynamics.

Lemma 4.2: Consider the limiting large, persistent WG as n → ∞, for fixed ρ close to one.
Also assume that 1

2 < δ < 1 holds. Then for all histories such that kt1 = 0 in Regime M, in the
next period μ(ht) will be in Regime M, in the interval, [μW , ρμW+(1−ρ)(1−μW )]. Furthermore,
the beginning of period beliefs converge to a constant, μfix, following a sequence of periods of
kt1 = 0 in Regime M.

Standard techniques allow us to compute the steady state distribution of Markov states, πW ,
which is defined as πWPW = πW . To simplify notation, we denote the probability of one of the
Regime 0 (2) states as πW0 (πW2 ), the probability of Regime M, low (high) investment return as
πWM0 (π

W
M1), and the probability of Regime 1, low (high) investment return as π

W
10 (π

W
11). After

much manipulation, we can solve the following equations for πWM1 and πWM0:

1 = πWM1(
bW + 1

1− pW
λ1 + 1 + λ1r

W ) + πWM0(1 + λ0r
W ), (5)

πWM1 =
1− ρ+ λ0[ρ− (1− pW )]

1− ρ+ λ1(ρ− pW )
πWM0. (6)

Next, the steady-state probability of being in one of the Markov states corresponding to a boom
can be written as

πWB =
bW + 1

1− pW
λ1π

W
M1. (7)

Finally, we take limit as ρ→ 1, yielding

pW = μW =
1

1 + ( α
1−α)(

1−c
c )
, pW = μW =

1

1 + (1−αα )(1−cc )(1− δ)
,

bW

rW
=
log(2 μW − 1)
log(1− 2μW ) ,
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and λ0
λ1
, 1−ρλ1

, and λ0r
W are computed in the proof of Proposition (4.3) below. This allows us to

compute the limiting boom probability, and the recession probability 1− πWB .
5

In Chamley and Gale (1994), when the number of agents is large and agents are extremely
patient, underinvestment is the only source of inefficiency; there is no overinvestment, in the
sense that when the investment return is low, the probability that an agent ever invests is zero.
This finding seems to contradict our finding for the large, persistent economy, that the economy
spends a positive fraction of periods in Regime 2 with all agents investing. In fact, our analysis
shows that the Chamley-Gale no-overinvestment result is robust to our setting. In the large,
persistent economy as δ → 1, the length of a single Regime 0 cascade approaches infinity, but the
length of a single Regime 2 cascade is bounded.6 Thus, booms are characterized by a sequence
of many Regime 2 cascades, which repeat themselves as long as the investment return remains
high. Overinvestment during the entire cycle only occurs during Regime M periods with a single
round 1 investor, or (almost certainly) during at most one Regime 2 cascade, which together
comprise a negligible fraction of the length of that cycle.

Comparing the Long Run Dynamics Across Games In this subsection, based on the
Markov matrices PNW and PW , we compare the long-run dynamics of the NWG and the WG,
for the large, persistent economy. We demonstrate that the expected length of a boom is shorter
and the expected length of a recession is longer in the WG. The probability of being in a recession
is greater in the WG than in the NWG. We also show that overinvestment (investing when the
return is low) is more prevalent in the NWG, and underinvestment (not investing when the
return is high) is more prevalent in the WG.

Let LNW
B be the expected length of a boom for the NWG. The actual length of a boom is

a random variable that can take one of the values, bNW + 1, 2(bNW + 1), 3(bNW + 1), and so
on. The probability that a boom lasts for k(bNW +1) periods is (1− pNW )(pNW )k−1. Thus, we
have

LNW
B = (bNW+1)

∞X
k=1

k(1−pNW )(pNW )k−1 = (bNW+1)
1

(1− pNW )
= (bNW+1)

2

1− (2ρ− 1)bNW+1

(8)
Similarly, the expected length of recessions LNW

R is

LNW
R = (rNW + 1)

1

pNW
= (rNW + 1)

2

1− (2ρ− 1)rNW+1
. (9)

Although the expected lengths of booms and recessions grow without bound as ρ→ 1, the ratios
have well defined limits.

Similarly, the expected length of booms in the WG, denoted by LW
B , is given by

LW
B = (bW + 1)

∞X
k=1

k(1− pW )(pW )k−1 =
bW + 1

1− pW
. (10)

5For the large, patient, persistent economy (δ → 1) the limiting probability of boom is πWB =
2c(α−c)

6cα−2c−4c2α−(α−c) log( α−c
c+α−2cα )

.
6The limiting ratio (1− δ)/(1− ρ) must be sufficiently large to ensure that there is a Regime 2.
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Denote the expected length of recessions in the WG by LW
R . It will be convenient to keep track

of the expected length of recessions starting from Regime M when the investment return is high,
which we denote by 1, and starting from Regime M when the investment return is low, which
we denote by 0. From PW , we have the following equations:

LW
R = (rW + 1) + pW 1 + (1− pW ) 0 (11)

1 = (1− λ1)[1 + ρ 1 + (1− ρ) 0] (12)

0 = (1− λ0)[1 + ρ 0 + (1− ρ) 1] + λ0L
W
R (13)

Solving the above equations simultaneously, we can compute LW
R .

Proposition 4.3: In the large, persistent economy, the expected length of a boom is shorter, and
the expected length of a recession is longer, in the WG than in the NWG. That is, LW

B < LNW
B

and LW
R > LNW

R .

The average length of a boom is shorter in the WG than in the NWG, because Regime
2 cascades are shorter with the possibility of waiting. The shorter Regime 2 cascades reduce
the chance that the investment return switches from high to low without being detected. The
average length of a recession is longer in the WG, because of the presence of Regime M. Suppose
the investment return switches to high during a Regime 0 cascade. In the NWG, the economy
moves to Regime 1, and the high investment return is revealed, ending the recession. However,
in the WG, the economy moves to Regime M, and is likely to stay there for many periods. This
directly prolongs the recession, and also allows for the possibility that the investment return
switches back to low before the high return is detected.

Next we consider long-run probabilities of boom and recession.

Proposition 4.4: In the large, persistent economy, the long-run probability of being in a
recession in the WG is greater than in the NWG, πWR > πNW

R and πWB < πNW
B .

The intuition for Proposition (4.4) is the following. The economy is oscillating between boom
and recession. Given that the average length of a boom is shorter and the average length of a
recession is longer in the WG than in the NWG (Proposition (4.3)), the economy must spend
relatively more time in a recession in the WG.

Finally, we show that the possibility of waiting reduces expected overinvestment and in-
creases expected underinvestment. Let O (U) be the overinvestment (underinvestment) index,
measuring the average investment (lack of investment) when the return is low (high). More
specifically,

O = lim
T→∞

1

T

TX
t=1

[
It

n
|St = 0]; U = lim

T→∞

1

T

TX
t=1

[
n− It

n
|St = 1].

For the large, persistent NWG, ONW and UNW can be expressed as

ONW = {b
NW

2
− 2ρ− 1
4(1− ρ)

[1− (2ρ− 1)bNW
]}π2 + (1− α)π0, (14)

UNW = {r
NW

2
− 2ρ− 1
4(1− ρ)

[1− (2ρ− 1)rNW
]}π0 + (1− α)π11. (15)
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To understand (14), note that the term in braces is the expected number of periods that the
investment return is low during bNW consecutive periods of Regime 2. The second term is the
probability that the investment return is low during Regime 1, multiplied by the fraction of
agents that invest.

For the large and persistent WG, OW and UW can be computed as:

OW = (1− α)(λ1π
W
M1 + λ0π

W
M0) +

λ1π
W
M1

1− pW
{b

W

2
− 2ρ− 1
4(1− ρ)

[1− (2ρ− 1)bW ]} (16)

UW = πWM1[(1− λ1) + λ1(1− α)] + πW0 {
rW

2
− 2ρ− 1
4(1− ρ)

[1− (2ρ− 1)rW ]} (17)

Proposition 4.5: In the large, persistent economy, (i) the overinvestment index is higher for
the NWG than for the WG, ONW > OW , and (ii) the underinvestment index is higher for the
WG than for the NWG, UNW < UW .

The reason for part (i) of Proposition (4.5) is that Regime 2 cascades are longer in the
NWG than in the WG. Longer Regime 2 cascades on average lead to higher probabilities of
overinvestment, since it becomes more likely that the investment return has switched from high
to low during a Regime 2 cascade. The result of part (ii) is due to the presence of Regime M in
the WG. The presence of Regime M increases the probability that no agent invests, even though
the investment return has switched from low to high.

Proposition 4.6: Consider the large, persistent WG with δ0 > δ00. Then we have (i) LW
B (δ

0) <
LW
B (δ

00) and LW
R (δ

0) = LW
R (δ

00); (ii) πWR (δ
0) > πWR (δ

00); (iii) OW (δ0) < OW (δ00) and UW (δ0) >
UW (δ00).

Propsoition (4.6) shows that as δ decreases, the long-run dynamics of the WG become closer
to those of the NWG. The underlying intuition is that, as δ decreases, Regime 2 cascades become
longer, because μW decreases, which tends to increase the average length of booms. On the other
hand, since ρ is very close to one, the transition probability from Regime M to Regime 2 does
not depend on δ. This means that the average length of recessions remains the same as δ
changes. Combining these two effects, as δ decreases the economy spends more and more time
in booms rather than in recessions. As a result, the overinvestment probability increases and
underinvestment probability decreases. If ρ is strictly less than 1, then a decrease in δ would
lead to a higher investing probability for type-1 agents in Regime M, which in general shortens
the average length of recessions.

Proposition (4.6) has some potentially testable implications. We can interpret a larger δ as
a smaller cost of waiting. Then our model would predict that, as the cost of delaying investment
decreases, booms will tend to be shorter and recessions will tend to be longer; that the economy
will tend to spend less time in booms; and that the averge investment (or output) will decrease.

Our results are consistent with the empirical evidence provided by Van Nieuwerburgh and
Veldkamp (2006), that analysts’ forecasts of real GDP are both less accurate and more dispersed
near business cycle troughs. Suppose that forecasters are the agents (or outsiders who observe a
signal) of our large, persistent economy, and forecasts are the conditional beliefs of the investment
return. Then measuring the inaccuracy of forecasts as the squared deviation between the forecast
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and the true investment return, the average inaccuracy is a function of α and the beginning of
period belief μ, given by

μ[α(1− μ1)
2 + (1− α)(1− μ0)

2] + (1− μ)[αμ0
2 + (1− α)μ1

2],

which is symmetric in μ with a peak at μ = 0.5. Assume that Regime 0 cascades are longer
than Regime 2 cascades, which occurs if the model parameters are symmetric (i.e., c = 0.5) or
if agents are reasonably patient. Then forecasts are most accurate during Regime 2 (boom),
somewhat less accurate during Regime 0 (recession), and far less accurate during Regime M
(also recession). In terms of dispersion, type-0 and type-1 forecasters will have almost the
same beliefs during Regime 2, somewhat more dispersed beliefs during Regime 0, and far more
dispersed beliefs during Regime M.

The WG can also shed some light on the timing of goverment policy to pull the economy out
of recession. Suppose the government only observes the history of aggregate investments. Our
model predicts that an investment subsidy will be most effective when the economy transitions to
Regime M, i.e., after the recession has lasted for some time. At that point, beliefs are reasonably
optimistic, and the subsidy needed to induce type-1 agents to invest (with a high probability)
is small. Moreover, it is reasonably likely that market activity will reveal the investment return
to be high (in a large economy) and that the recession can be ended. On the other hand, if
there is a subsidy at the beginning of Regime 0, agents are very pessimistic, which means that
a large subsidy rate is required to induce type-1 agents to invest, and the investment return
is very likely to be low. As a result, even if type-1 agents are induced to invest, the revealed
information is very likely to be bad news, and thus the recession will continue.

Proof of Lemma 4.1. For a type-1 agent that does not invest in round 1 and observes kt1 = 0,
the probability of the high investment return, μ0,q1 , is

μ0,q1 =
1

1 + 1−μ
μ (1−αα )(1−(1−α)q1−αq )n−1

=
1

1 + 1−μ
μ (1−αα )Q

. (18)

The last equality holds because q must be near zero as n approaches infinity.7 From (4), the

investment probability q can be written as q = Q
1
n−1

αQ
1
n−(1−α)

. The probability of kt1 = 0 in the

high investment return is given by

pr01 = (1− αq)n = [
αQ

1
n − (1− α)

2α− 1 ]−n.

Taking the limit of log(pr01), as n approaches infinity, yields

lim
n→∞

log(pr01) = − lim
n→∞

log[αQ
1
n−(1−α)
2α−1 ]

1/n
= − α

2α− 1 logQ.

Thus, we have
lim
n→∞

pr01 = Q−α/(2α−1).

7To economize on clutter, we suppress the dependence of Q, pr00, pr01, etc. on beginning of period beliefs, μ.
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By a similar computation, one can show that the probability of kt1 = 0 in the low investment
return is given by

lim
n→∞

pr00 = Q−(1−α)/(2α−1).

The probability of kt1 = 1 in the high investment return is given by nαq(1− αq)n−1. Therefore,
we have

lim
n→∞

pr11 = lim
n→∞

(nαq(pr01)) = lim
n→∞

(nα

"
Q

1
n − 1

αQ
1
n − (1− α)

#
pr01)

=

µ
α

2α− 1

¶
Q−α/(2α−1) log(Q).

By a similar computation, one can show that the probability of kt1 = 1 in the low investment
return is given by

lim
n→∞

pr10 =

µ
1− α

2α− 1

¶
Q−(1−α)/(2α−1) log(Q).

If μ is close to μW , it follows that round 1 investment is only slightly profitable for a type-1
agent. For a type-1 agent to be indifferent between investing in round 1 and waiting, the option
value of not having to invest if kt1 = 0 must be small. It follows that profits from investing in
round 2 are only slightly negative if kt1 = 0, and are positive if k

t
1 > 0. The indifference equation

can therefore be written as

(1− δ)(μ1 − c)/δ = Pr(kt1 = 0|s = 1, q, μ1)(μ
0,q
1 − c),

which can be written as

(1− δ)

δ

∙
1− c− c(

1− α

α
)(
1− μ

μ
)

¸
Qα/(2α−1) =

∙
c− 1 + cQ(

1− α

α
)(
1− μ

μ
)

¸
. (19)

As n→∞ and μ→ μW , the left side of (19) converges to zero, which implies Q→ 1. Therefore,
we have limμ→μW limn→∞ pr01 = 1 and limμ→μW limn→∞ pr00 = 1 hold. Although we have
limμ→μW limn→∞ pr11 = 0 and limμ→μW limn→∞ pr10 = 0, having one agent invest is infinitely
more likely than having more than one agent invest. To see this, note that

lim
μ→μW

lim
n→∞

Ã
nX

k=2

prk1

!
= 1− lim

μ→μW
lim
n→∞

pr11− lim
μ→μW

lim
n→∞

pr01 = 1− lim
μ→μW

lim
n→∞

pr11−Q−
α

2α−1 .

Thus, we have

lim
μ→μW

lim
n→∞

µPn
k=2 prk1

pr11

¶
= lim

Q→1
[

1−Q−
α

2α−1

α
2α−1Q

− α
2α−1 logQ

]− 1 = lim
Q→1

[
Q

α
2α−1 − 1
α

2α−1 logQ
]− 1

= lim
Q→1

α
2α−1Q

α
2α−1−1

α
2α−1

1
Q

− 1 = 0.

A similar calculation yields

lim
n→∞

µPn
k=2 prk0

pr10

¶
= 0,
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which completes the proof. ¤

Proof of Lemma 4.2. During the first period that the economy emerges from Regime 0 into
Regime M, clearly beliefs must satisfy μ ∈ [μW , ρμW +(1−ρ)(1−μW )]. For beginning of period
t beliefs in this interval, consider the mapping to beginning of period t+ 1 beliefs, Ψ(μ), based
on the equilibrium mixing probability and outcome kt1 = 0. For ρ sufficiently close to one, from
the proof of Lemma (4.1) the equilibrium mixing condition is (19). Denoting the left hand side
of (19) as LHS, we have

Q =
LHS + 1− c

c(1−αα )(1−μμ )
. (20)

Using the expression of μk,qi and (20), μ0,q can be simplified to

μ0,q =
1

1 + (1 +D)(1−cc )(
α
1−α)−D(1−μμ )

, (21)

where D = (1−δ)
δ Qα/(2α−1) is governed by the discount factor, since Qα/(2α−1) is nearly one for

all μ ∈ [μW , ρμW + (1 − ρ)(1 − μW )]. Since no one invests in round 2 when kt1 = 0, beliefs at
the beginning of period t+ 1 are given by

Ψ(μ) =
2ρ− 1

1 + (1 +D)(1−cc )(
α
1−α)−D(1−μμ )

+ 1− ρ. (22)

It is straightforward to check that Ψ(μW ) > μW and Ψ(ρμW + (1 − ρ)(1− μW )) < ρμW +

(1−ρ)(1−μW ) hold, so Ψ must have a fixed point within the interval, which we denote by μfix.
From (22), the slope of the mapping is −D(2ρ − 1). Therefore, for δ > 1

2 and ρ close to one,
it can be shown that beliefs converge to μfix over time (in an oscillatory fashion) and remain
within the interval, [μW , ρμW + (1− ρ)(1− μW )], as long as no one invests in round 1.8 ¤

Proof of Proposition 4.3. Since rW = rNW and pW = pNW , we will drop the superscripts
without causing confusion. It will also be convenient to adopt the shorthand notation,

z =

µ
α

1− α

¶µ
1− c

c

¶
, (23)

z > 1 by α > c. From (2), we have

lim
ρ→1

(r + 1)(1− ρ) = lim
ρ→1

r(1− ρ) = lim
ρ→1

(1− ρ) log[z−1z+1 ]

log(2ρ− 1) =
1

2
log

1 + z

z − 1 . (24)

From Lemma (4.1), we have9

lim
ρ→1

λ0
λ1

= lim
ρ→1

pr10(μfix)

pr11(μfix)
=
1− α

α
, (25)

lim
ρ→1

(1− ρ)

λ1
= lim

ρ→1
1− ρ

1−Q(μfix)
−α
2α−1

= lim
ρ→1

−1
α

2α−1Q
0(μfix)

=
2α− 1

α

z

z2 − 1 . (26)

8To demonstrate that we remain within the interval (and therefore do not drop out of Regime M), solve the
quadratic equation based on (22) for μfix, then show that (μfix−μW )/( ρμW +(1−ρ)(1−μW )−μfix) is greater
in absolute value than the slope of Ψ. Computations were performed using Maple 10.

9 In (26), we use l’Hopital’s rule and analytically evaluate limρ→1[Q
0(μfix)] using Maple 10 software.
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By using the fact that λ1 goes to 0 as ρ goes to 1 and (24)-(26) , we have

lim
ρ→1

rλ1 = lim
ρ→1

(r + 1)λ1 = lim
ρ→1

(r + 1)(1− ρ)
λ1
1− ρ

=
1

2

α

2α− 1
z2 − 1
z

log
z + 1

z − 1 , (27)

lim
ρ→1

rλ0 = lim
ρ→1

rλ1
λ0
λ1
=
1

2

1− α

2α− 1
z2 − 1
z

log
z + 1

z − 1 , (28)

lim
ρ→1

πWM0

πWM1

= lim
ρ→1

(1−ρ)
λ1

+ (1− 1
1+z )

(1−ρ)
λ1

+ λ0
λ1

1
1+z

=
1 + α

2α−1(z − 1)
1 + 1−α

2α−1
z−1
z

. (29)

By (8) and (10), we have

LNW
B − LW

B =
bNW + 1

1− pNW
− bW + 1

1− pW
. (30)

To show that (30) is positive, we define the function, p10(b) ≡ 1
2 −

1
2(2ρ − 1)b+1, which is the

probability of the investment return switching from high to low after b periods. Note that
p10(bNW ) = 1− pNW and p10(bW ) = 1− pW hold. We will now show that b+1

p10(b) is increasing in
b. We have

b+ 1

p10(b)
− b

p10(b− 1) ∝ [1− (b+ 1)(2ρ− 1)
b + b(2ρ− 1)b+1]

= [1− (2ρ− 1)]{[1 + (2ρ− 1) + ...+ (2ρ− 1)b]− (b+ 1)(2ρ− 1)b]}
> [1− (2ρ− 1)]{(b+ 1)(2ρ− 1)b − (b+ 1)(2ρ− 1)b} = 0. (31)

Thus, b+1
p10(b) is increasing in b, so we have LNW

B > LW
B .

To show LW
R > LNW

R , first recall that LNW
R = r+1

p holds. By (11), (12), and (13), LW
R −LNW

R

can be simplified to

LW
R − LNW

R ∝ p2(1− λ1)[λ0 + (1− λ0)
(1− ρ)λ1
1− ρ+ ρλ1

] + (1− λ0)p[1− ρ+ ρλ1 − pλ1](2−
λ1

1− ρ+ ρλ1
)

−(r + 1)(1− ρ)[λ1(1− λ0)(1− p)− λ0(1− λ1)p].

Since λ1
1−ρ+ρλ1 < 1 holds, to show LNW

R < LW
R , it is sufficient to show that the third term is

smaller than the first term in the above expression, which is implied by the following condition:

(r + 1)(1− ρ)[1−
p

1− p

1− λ1
1− λ0

λ0
λ1
] ≤ p+

p

1− p

1− λ1
λ1

(1− ρ) +
p2

1− p

1− λ1
1− λ0

λ0
λ1

. (32)

Using the limits (25)-(29), when ρ converges to 1, (32) becomes

1

2
(1− 1− α

α

1

z
) log

1 + z

z − 1 ≤ 1

1 + z
+

1

z2 − 1
2α− 1

α
+

1

z(z + 1)

1− α

α

⇔ 1

2
log

1 + z

z − 1 ≤
1

z2 − 1
z2 − 1−α

α

z − 1−α
α

.

since z > 1 holds, the following inequality is sufficient to show LNW
R < LW

R :

2z

z2 − 1 − log
1 + z

z − 1 ≥ 0. (33)
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Given z is bounded, (33) holds. To verify the condition, the derivative of the expression with
respect to z is −4

(z2−1)2 , which is negative, so the left side of (33) is decreasing in z. Moreover,

we have limz→∞[
2z

z2−1 − log
1+z
z−1 ] = 0. Therefore, inequality (33) holds. ¤

Proof of Proposition 4.4. To establish part (i), it is sufficient to show

lim
ρ→1

πNW
R

πNW
B

< lim
ρ→1

πWR
πWB

, (34)

because πNW
R + πNW

B = 1 and πWR + πWB = 1 hold.
By (1) and (7) we have

lim
ρ→1

πNW
R

πNW
B

= lim
ρ→1

r+1
p

bNW+1
1−pNW

= lim
ρ→1

r+1
p λ1

bNW+1
1−pNW λ1

and

lim
ρ→1

πWR
πWB

= lim
ρ→1

(rλ1 + 1) + (1 + rλ0)
πWM0

πWM1

bW+1
1−pW λ1

> lim
ρ→1

(rλ1 + 1) + (1 + rλ0)
πWM0

πWM1

bNW+1
1−pNW λ1

. (35)

Inequality (35) comes from the fact that bW+1
1−pW < bNW+1

1−pNW holds. To show (34), it is sufficient to
show

lim
ρ→1

(rλ1 + 1) + (1 + rλ0)
πWM0

πWM1

≥ lim
ρ→1

r + 1

p
λ1. (36)

Using the previous limiting results (25)-(29), inequality (36) is equivalent to

4+2
1− α

2α− 1
z − 1
z

+2
α

2α− 1(z−1)+
1− α

2α− 1
z2 − 1
z

log
z + 1

z − 1−
α

2α− 1(z
2−1) log z + 1

z − 1 ≥ 0. (37)

It is easy to verify that inequality (37) holds if the following condition holds

1

2
log

z + 1

z − 1 −
1

z − 1 < 0. (38)

To see (38) holds, note that the derivative with respect to z is positive, which implies that the
left side of (38) is increasing in z. Moreover, we have limz→∞[

1
2 log

z+1
z−1 −

1
z−1 ] = 0. Therefore,

(38) holds. ¤

Proof of Proposition 4.5. First, define the function, A(b), by

A(b) ≡ 1
b
{ b
2
− 2ρ− 1
4(1− ρ)

[1− (2ρ− 1)b]} = 1

2
− 2ρ− 1
4(1− ρ)

[1− (2ρ− 1)b]
b

.

That is, A(b) is the probability that the investment return is low during one of the b periods
of Regime 2, chosen at random, and A(r) is the probability that the investment return is high
during one of the r periods of Regime 0, chosen at random. We show that A(·) is an increasing
function. To see this, it is sufficient to show that [1−(2ρ−1)

b]
b is decreasing in b. This condition is

satisfied, since we have

1− (2ρ− 1)b
b

− 1− (2ρ− 1)
b+1

b+ 1
∝ [1− (2ρ− 1)b+1 − (b+ 1)(2ρ− 1)b(1− (2ρ− 1))] > 0,
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where the last inequality follows from (31).
By (16) and the fact that both λ1 and λ0 go to 0 as ρ goes to 1, we have

lim
ρ→1

OW = lim
ρ→1

bw + 1

1− pW
λ1π

W
M1A(b

W ) = lim
ρ→1

πWB A(bW ). (39)

By (14) and the fact that r and bNW go to infinity as ρ goes to 1, we have

lim
ρ→1

ONW = lim
ρ→1

A(bNW )
(bNW + 1)p

(r + 1)pNW + (bNW + 1)p
= lim

ρ→1
πNW
B A(bNW ). (40)

Now we compare (39) and (40). From Proposition (4.4), we have limρ→1 πNW
B > limρ→1 πWB .

And by the fact bNW > bW , we have A(bNW ) > A(bW ). Therefore, limρ→1OW < limρ→1ONW .
This proves part (i).

Now we show part (ii). By (15), we have

lim
ρ→1

UNW = lim
ρ→1

rpNW

(r + 1)pNW + (bNW + 1)p
A(r) = lim

ρ→1
πNW
R A(r). (41)

On the other hand, by (17), we have

lim
ρ→1

UW = lim
ρ→1

πWM1 + (rλ1π
W
M1 + rλ0π

W
M0)A(r)

= lim
ρ→1

[(rλ1 + 1)π
W
M1 + (rλ0 + 1)π

W
M0]A(r) + [1−A(r)]πWM1 −A(r)πWM0

= lim
ρ→1

πWR A(r) + lim
ρ→1

[1−A(r)]πWM1 −A(r)πWM0, (42)

where the last equality follows from (7). Now we compare (41) and (42). Since by Proposition
(4.3), limρ→1 πWR > limρ→1 πNW

R holds, the following condition is sufficient to show limρ→1(UW−
UNW ) > 0:

lim
ρ→1

[1−A(r)]πM1 −A(r)πM0 ≥ 0, (43)

After using (29) and simplifying, we can rewrite (43) as

1

2

µ
1− α

2α− 1

¶
z − 1
z

+
1

(z + 1) log z+1
z−1

[2 +
1− α

2α− 1
z − 1
z

+
α

2α− 1(z − 1)]−
1

2

α

2α− 1(z − 1) ≥ 0.

The above inequality holds since 1
2 log

z+1
z−1 <

1
z−1 , by (38). Therefore, inequality (43) holds. ¤

Proof of Proposition 4.6. By Proposition (3.5), we have μW (δ0) > μW (δ00). This implies that
bW (δ0) < bW (δ00). On the other hand, rW does not depend on δ. The limit limρ→1 πWM1/π

W
M0

does not depend on δ either (see (29)). Following the proof of Proposition 4.3, We have

LW
B (δ

0)− LW
B (δ

00) =
bW (δ0) + 1

1− pW (δ0)
− bW (δ00) + 1

1− pW (δ00)
< 0.

Inspecting the proof of Proposition (4.3), one can see that LW
R does not depend on δ, thus

LW
R (δ

0) = LW
R (δ

00). This proves part (i).
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To show part (ii), it is sufficient to show that

lim
ρ→1

πWR (δ
0)

πWB (δ
0)
> lim

ρ→1

πWR (δ
00)

πWB (δ
00)
,

because πWR + πWB = 1 hold. By the proof in Proposition (4.4),

lim
ρ→1

πWR (δ
0)

πWB (δ
0)
− lim

ρ→1

πWR (δ
00)

πWB (δ
00)
= lim

ρ→1

(rλ1 + 1) + (1 + rλ0)
πWM0

πWM1

λ1
[

1
bW (δ0)+1
1−pW (δ0)

− 1
bW (δ00)+1
1−pW (δ00)

] > 0.

The last inequality follows part (i) and limρ→1 πWM1/π
W
M0 does not depend on δ.

By the proof in Proposition (4.5), limρ→1OW (δ) = limρ→1 πWB (δ)A(b
W (δ)). Moreover,

A(bW ) is increasing in bW . Given that bW (δ0) < bW (δ00), we have A(bW (δ0)) < A(bW (δ00)). In ad-
dition, from part (ii) we have πWB (δ

0) < πWB (δ
00). Thereforefore, limρ→1OW (δ0) < limρ→1OW (δ00).

Similarly,
lim
ρ→1

UW (δ) = lim
ρ→1

πWM1(δ) + [rλ1π
W
M1(δ) + rλ0kπ

W
M1(δ)]A(r),

where k ≡ πWM0

πWM1
. Note that when ρ goes to 1, by (26)-(29) the limits of rλ1, rλ0 and k do not

depend on δ. Therefore, to show UW (δ0) > UW (δ00) it is sufficient to show that limρ→1 πWM1(δ
0) >

limρ→1 πWM1(δ
00). By (5) and (6),

lim
ρ→1

πWM1(δ) =
1

limρ→1[
bW (δ)+1

1−pW (δ)λ1 + 1 + k + rλ1 + rkλ0]
.

Since bW (δ)+1

1−pW (δ) is decreasing in δ, we have limρ→1 πWM1(δ
0) > limρ→1 πWM1(δ

00). This proves part

(iii).¤

3. More Simulation Results

Propositions (2.1) and (3.2) suggest a procedure to compute equilibrium trajectories numeri-
cally, for both the NWG and the WG. Basically, the computation is feasible because expectations
of what future agents might do have no impact on current choices. Equilibrium can be computed,
history by history, by updating beliefs, determining the regime, computing the investment prob-
ability if necessary, and so on. Although the number of histories to compute grows exponentially
as the number of periods increases, it is relatively easy to compute an equilibrium trajectory,
by drawing a realization of the investment state in each period, then drawing signals, drawing
the outcome of each type-1 agent’s mixing (if necessary), and so on. Figures 1-6 demonstrate
equilibrium trajectories for the two games for various discount factors, with other parameters
fixed at α = 0.65, c = 0.5, n = 100, ρ = 0.95, and a time horizon of 1000 periods.10

For the NWG, the symmetry of parameters leads to symmetric cycles. The economy starts in
Regime 1, but the large number of agents yields almost perfect information about the investment

10Programming was done using SAS version 9.1. Source code is available upon request. The same "seed" was
used in both games to draw random numbers, so the investment state and signal realizations are the same across
the two games. We are grateful to Hammad Qureshi for doing an excellent job programming the algorithms.
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state. Beliefs jump into either Regime 2 or Regime 0, with μ(ht) ' 1 if about 65 agents invest in
period t, and μ(ht) ' 0 if about 35 agents invest in period t. Figure 2 shows the self-correcting
nature of the cascades, as type-1 agents occasionally invest, or type-0 agents occasionally choose
not to invest, as the probability of an unobserved change in the investment return builds up.
For the WG, parameters are symmetric, but the pattern of cycles is not. The Regime 0 cascade
lasts for the same number of periods in the WG as in the NWG, but Regime 2 cascades are
much shorter, as seen in Figure 3.

Table 1 shows averages for investment, overinvestment, underinvestment, and welfare.11 Sev-
eral features emerge from this example. First, the average length of a recession is longer and the
average length of a boom is shorter under the WG than under the NWG. Second, under the WG
the economy spends more time in recession than in a boom. Third, there is less overinvestment
and more underinvestment under the WG than under the NWG. These features generalize across
all parameter values for which we have performed simulations. Table 1 indicates that either the
NWG or the WG can provide higher welfare, and that the tradeoff is non-monotonic in δ.

Table 1: Simulation Statistics

NWG WG (δ = 0.9) WG (δ = 0.7) WG (δ = 0.5)
Mean of Investment 54.941 33.255 38.255 43.167

Overinvestment Index 0.13446 0.01584 0.04652 0.06419

Underinvestment Index 0.09405 0.19229 0.17297 0.14152

Welfare 14.0245 14.75895 13.9886 14.5535

Booms are shorter in the Waiting Game, because the shorter Regime 2 cascade reduces the
chance that the investment return changes undetected, from high to low and back again to high,
all within the same boom. Also, when the investment state has changed from high to low, the
economy will learn about the change more quickly, on average. Recessions are longer in the
Waiting Game, because when the economy moves out of Regime 0, we move into Regime M.
Thus, while the No-Waiting Game moves into Regime 1 and activity almost reveals the state,
the Waiting Game moves into Regime M and activity reveals little, on average. Figure 3 shows
that the economy must wait several periods until a single type-1 agent decides to invest, and
having two or more agents invest in round 1 of any one period is very unlikely. This pattern is
established analytically, for the large, patient, persistent economy, in the next section.

We conjecture that, in the Waiting Game, recessions will become shorter and booms longer
as δ decreases. Intuitively, the Waiting Game with δ = 0 has the same cyclical behavior as
the No-Waiting Game, because round-1 behavior and the resulting information flow will be the
same. As δ decreases, the Waiting Game should look more and more like the No-Waiting Game,
with longer booms and shorter recessions. Another intuition, based on Proposition (3.5), is that
as δ decreases, Regime 2 cascades are longer. Also, type-1 agents are more likely to invest in
Regime M, which provides more information to the market and shortens the amount of time
before a switch to the high investment state is detected, thereby shortening the average length
of recessions. Our numerical results exhibit this pattern.
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Figure 1: State vs Time

Figure 2: Total Investment in the NWG
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Figure 3: Round 1 Investment in the WG (δ = 0.9)

Figure 4: Total Investment in the WG (δ = 0.9)

11The average overinvestment (underinvestment) is the probability that the state is low (high) and a random
agent invests.
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Figure 5: Total Investment in the WG (δ = 0.7)

Figure 6: Total Investment in the WG (δ = 0.5)
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