Instrument of M Policy

\[M \rightarrow i \]

\(M \) can control \(P, T \) via \(B \) if

- \(m^{D} \) (or \(V \)) predictable and
- \(K = \frac{M}{B} \) predictable

But neither entirely predictable

- \(V_{M2} = Y/M2 \) more predictable than \(V_{M1} \), even \(V_{M1-5} \)

- but \(K_{M2} = M2/B \) less predictable than \(K_{M1-5} \)

This has led Fed to rely on \(i \), instrument since 1983.

Targets short-term Fed Funds rate using Loans to Dealers.
1. No π - feedback
 \(i \) held constant \((m+819)\)

2. 100% π - feedback
 \(r \) held constant \((m+819)\)

3. Strong π - feedback
 > 100% feedback \((m+821)\)

4. Taylor Rule \((m+821)\)
 Incorporates strong π - feedback
 + tries to stabilize \(y \)
1. No \(\Pi \)-feedback

\[
i = i^* = \text{constant}
\]

\(\Pi_0^e = \text{initial } \Pi^e \)

* If \(i^* < \rho_0 + \Pi_0^e \)

\[
v = i^* - \Pi_0^e < \rho_0
\]

\[\Rightarrow m^x(v) > 0\]

\[\Rightarrow \Pi > \Pi_0^e, \Pi^e \uparrow\]

\[\Rightarrow v \downarrow, m^x(v) \uparrow, \Pi \uparrow\]

* If \(i^* > \rho_0 + \Pi_0^e \)

\[V_{ie - vousa}, \Pi \downarrow\]

\[\Rightarrow \Pi \text{ destabilized.}\]

\[
\cdot \rho_0 \text{ changes continually with } S_{\text{sum}}(v), D_{\text{sum}}(v),
\]

\(\Pi_0^e \) uncertain.

So \(i^* = \rho_0 + \Pi_0^e \) won't last.
2. 100% feedback (r target)

\[i = r^* + \pi \]
\[r^* = r \text{ target} \]
\[\pi = \text{last 12 mo} \quad \pi \leq \pi^e \]

- If \(r^* < r_0 \),
 \[m^x(r^*) > 0 \text{ permanently}, \]
 \[\Rightarrow \pi > \pi^e \text{ permanently}, \]
 \[\Rightarrow \pi^e, \pi \text{ creep up perpetually} \]

- If \(r^* > r_0 \),
 \[\pi^e, \pi \text{ creep down perpetually} \]

Not as bad as 1, but still destabilizes \(\pi \), even if \(r^* \) is Fed's best guess of \(r_0 \).
3. Strong π-feedback

$$i = r^* + \pi^1 + a(\pi - \pi^*)$$ \hspace{1cm} (2)

$$a > 0$$

π^* is π-target.

r^* is Fed's guess of r_0

Impies

$$i = (r^* - a \pi^*) + (1 + a) \pi$$ \hspace{1cm} (3)

$$1 + a > 100\% \text{ since } a > 0.$$

$$\pi^1 \Rightarrow i - \pi = i - \pi^e = r^1,$$

$m_x(v) < 0 \text{ eventually},$

$$\pi^1 \not\downarrow.$$

If $r^* \neq r_0,$

$$\pi \rightarrow \pi^* + \frac{r_0 - r^*}{a} \text{ when } r_0 = i - \pi.$$ \hspace{1cm} (4)

Fed misses π target, but π stable,

High $a \Rightarrow \pi \text{ close to } \pi^*,$

but i more sensitive to $\pi.$
The "Taylor Rule" - John Taylor / Stanford

1987-92, Fed followed rule for Fed Funds Rate

\[i^* = 1.0 + 1.5 \bar{\pi} + 0.5 \text{ygap} \]

Incorporate Strong \(\pi^- \) Feedback,
with \(a = 0.5 \), \(r^* - a \pi^* = 1.0 \)

\[\Rightarrow i^* = 1.5 \bar{\pi} + 0.5 \text{ygap} \]

Consistent with several combos of \(\pi^* \), \(r^* \)

<table>
<thead>
<tr>
<th>(\pi^*)</th>
<th>(r^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>4%</td>
<td>3%</td>
</tr>
</tbody>
</table>

\[\Rightarrow r^* - a \pi^* = 1.0 \text{ with } a = 0.5 \]

(And same combos of \(\bar{\pi}, r_0 \).)
\(y_{gap} \) term in Taylor Rule

\[= \% \text{ excess of } y \text{ over trendline} \]

avg value = 0.

Try to exploit SR Phillips Curve to stabilize y about trend without accelerating \(\Pi \).

Must be restrictive when \(y \) high, \(U \) low
(as in 2005-2007) to make up for easy money when \(y \) low, \(U \) high (as 2009-11)
Taylor Rule Examples

FF Target \(i^* = 1.0 + 1.5 \pi + 1.5 ygyp \)

a. If \(\pi = 2\% \), \(ygyp = 0 \),

\[i^* = 1.0 + 1.5(2) + 1.5(0) \]
\[= 4.0\% \]

b. If \(\pi \uparrow \) to \(4\% \),

\[i^* \rightarrow 1.0 + 1.5(4) + 1.5(0) \]
\[= 7.0\% \quad (\Delta i = 1.5 \; \pi = 3\%) \]

c. If \(\pi = 2\% \), \(ygyp = -2\% \),

\[i^* \rightarrow 1.0 + 1.5(2) + 1.5(-2) \]
\[= 3.0\% \quad (\Delta i = 0.5(-2\%)) \]
\[= -1\% \quad \text{from case a) } \]

d. If \(\pi = 2\% \), \(ygyp = +2\% \),

\[i^* \rightarrow 1.0 + 1.5(2) + 1.5(+2) \]
\[= 5.0\% \quad (\Delta i = 0.5(+2\%)) \]
\[= +1\% \quad \text{from case a) } \]
Cladio, Cali + Gebrler (2000)

- Martin, Bume, Miller (1951-79)

 used weak IT feedback

 (~ 60%)

 ⇒ IT accelerated

- Volcker, Greenspan (79- their study)

 used strong IT feedback

 (~ 200%)

 ⇒ IT brought back under control
The Deflation Concern

- What if $\pi, \pi^e < -v_0$?

 - *iff* can't go below 0

 since M pays 0.

 $\Rightarrow v > v_0$ even at *iff* = 0

 \Rightarrow Pushes π^e even lower.

 \Rightarrow Deflationary Spiral & Death?

 - Japan's problem in 1990's?
Should Fed target $\pi^* > 0$

(e.g. 2%)

to give it room
to lower if $\pi < \pi^*$

and/or yield < 0?

Bernanke say yes

Cons —

• Indexed debt can eliminate
debtor \rightarrow creditor redistribution.

• M activists stabilize π,

\textit{not} 0 or y

• Fed can target longer maturities

\textit{if} interest 0: 3m, 6m, 1y, etc.

• Japan's problem is "Zombie Firms"
\textit{(unresolved insolvencies)}

\textit{not} $\pi^* < 0$.
Maturity Issues and Taylor Rule

FOMC Funds Rate iff is overnight rate

- 1-day maturity
- Has negligible effect on borrowing, savings by itself.

It's only a trivial portion of longer term rates (5-yr auto loan, 30-yr mortgage)

But - FOMC only meets every 6 weeks, holds

iff const between meetings (usually)

iff target more like 6-week rate

iff still has only weak effect on spending.

If iff target falls to 0

FOMC can still stimulate spending by reducing

longer rates

e.g. 3 mo, 6 mo, 1 yr Treasury Rates

with OMO if necessary.
Stabilization Policy

FR Act Section 2a: M Policy Objectives:

The Board of the FR System and the FOMC shall maintain long-run growth of the M and credit aggregates commensurate with the economy's long-run potential to increase production so as to promote effectively the goals of

- maximum employment
- stable prices, and
- moderate long-term interest rates.

Fed can stabilize prices using \(M \) or \(i \)

(if it knows \(m^0 \) or \(r_0 \))

But can it achieve other 2 goals w/o destabilizing prices?
Moderate long-term interest rate goal achievable?

Fed can't permanently reduce r
 w/o accelerating T
- M+B 19, 21

Fed can destabilize r, i
 with start/stop T policy.
- M+B 19

Fed can permanently reduce, stabilize i
 with low, steady T policy.
 \[\Rightarrow \text{low, steady } T^e, i = v_0 + T^e. \]
But "Maximum Employment" goal problematic

Natural Rate Hypothesis (M. Friedman 1968)

Fed can't permanently hold U below UN w/o accelerating it.

Now generally accepted even by "New Keynesians"

At best, Fed might be able to stabilize employment U, with easy M when U high + y low, tight M when U low + y high.

= Rationale for y-gap term in Taylor Rule.
Friedman/Schwartz critique of Stabilization Policy. (M+B22)

May be destabilizing to y+U in practice, because M (or i) affects y (or U) only with long and variable lag.

Lags

- Inside Lag
 (Inside Policy Process)
 - Recognition Lag
 - Decision Lag
 - Implementation Lag

- Outside Lag
 (Outside Policy Process)
Recognition Lag

GDP

- Quarterly \(\Rightarrow 1.5 \) mo out of date by end of Q.

- "Advance" estimate out of 1st mo of next Q. \(\Rightarrow 2.5 \) mo lag

- "Preliminary" est out end of 2nd mo. \(\Rightarrow 3.5 \) mo lag

- "Final" est (subject to annual revision) out end of 3rd mo. \(\Rightarrow 4.5 \) mo lag

"Y gap" based on 5-yr centered trend line in original Taylor paper. \(\Rightarrow \) additional 2.5 yr lag
Decision Lag

FOMC only meets 8 times/yr.

May wait & see if new situation persists.

Implementation Lag

Fed prefers numerous small Δi ($\pm 25bp$) to one large Δi.

* Can add 6-12 mo to Inside Lag.*
Outside Lag

$\Delta B \rightarrow \Delta M$

or

$\text{Diff} \rightarrow \Delta i \rightarrow \log$

\rightarrow Spending \rightarrow P, Y

Outside lag alone could be 1-2 yrs.

Inside + Outside lag may be years.

Situation may have completely changed by then.
Desired effect of "yygap" term in Taylor Eq in:

- Neutral M Policy
- Activist M Policy

Economic Activity

Tight M

Easy M

Time
Desired effect of "ygap" term in Taylor Eq 'n:

- Neutral M Policy
- Activist M Policy

Economic Activity

[Graph showing economic activity over time with labels for "Easy M", "Tight M", and "Activist M Policy" events.]

Destabilizing actual effect with lags.
Castor Oil / Bismuth cycle

Castor Oil - Laxative
Bismuth - Anti-Diarrheal

Digestive Activity

Castor Oil

Friedman - y gap feedback can have similar results
Best to just stabilize P, IT with M policy,
Let y, U take care of solvers,
Try to minimize |IT - IT^*|
Castor Oil / Bismuth cycle

Castor Oil - Laxative
Bismuth - Anti-Diarrheal

Digestive Activity

Castor Oil

Bismuth

Friedman -

\[\gamma \text{ gap feedback can have similar results} \]

Best to just stabilize \(P, T \) with \(M \) policy,

Let \(y, u \) take care of solvers,

Try to minimize \(|\pi - \pi^*| \).
So why is U still so high?

9.0% 4/11, up from 8.8% 3/11

Does this warrant easy M? (i_F = 0)

Series Id: LNSI4000012
Seasonally Adjusted
Series title: (Seasonally Unemployment Rate - 16-19 yrs.
Labor force status: Unemployment Rate
Type of data: percent or rate
Age: 16 to 19 years

Particularly among the inexperienced?
(27.1% for 16-19 yrs olds, 10/10)

http://data.bls.gov/PDQ/servlet/SurveyOutputServlet

11/15/2010

Series Id: LNS14627659
Seasonally Adjusted: (Seas)
Series title: Unemployment Rate - Less than a High School Diploma, 25 yrs. & over
Labor force status: Unemployment rate
Type of data: Percent or rate
Age: 25 years and over
Educational attainment: Less than a high school diploma

And the low-skilled:

(15.3% for less than HS diploma,
25 yrs+, 10/10)
And why is median duration of unemployment so much higher than previous recessions?
(
21.2 wks 10/10, peaked at 25.5 7/6/10)

Source: U.S. Department of Labor, Bureau of Labor Statistics

http://research.stlouisfed.org/fred2/graph/?id=UEMPMED&printgraph&lo... 11/15/2010
2 obvious reasons:

1. 40.8% increase in Minimum Wage
 6/07 - 6/09
 $5.15 → $7.25
 • $5.15 was not indexing in 2007,
 • $7.25 would not be without recession.
 • But adverse shock of subprime crisis
 apparently makes $7.25 indexing for
 lowest experience, lowest skills.
 • Food can't inflate away MW if
 Congress keeps raising it.

 Real MW was higher in 1970's, but
 coverage now higher?

2. **Unemployment Benefits extended to**
 99 wks in this recession.
 26 wks permanent level
 - Extended in recession, but rarely
 > 53 wks.

- Pays about 50% of lost wage,
 up to about $350/wk
 (more w/dependents)

 - Most attractive to inexperienced
 + low skill

 - More attractive in recession
 when new job may pay less than old
 than it boom
 when new job may pay more than old.

 > automatic destabilizer

 - coverage higher than in past, also.
- Larry Summers, *Understanding Unemployment*, 1992:

 - U benefits increase level, duration of U.
 - Feel shouldn't try to use M policy to undo effects of U benefit policy.

- 99 wks extension renewed to 1/2012 but note:

 \[U \text{ likely to stay high into 2012, regardless of } M \text{ policy.} \]