Velocity × Quantity Eq: \(M + 1 = 3,4 \)

Quantity Theory of Money (Review)

\[P \times V = \frac{M^S}{m^0} \text{ in L.R. eq.} \]

"\(M^S \): \(M \) set by gov't, banks.

\(m^0 \)

- Increases with volume of real transactions/yr (proportional to real income)

- Increases with avg time each $ held before transactions

- Or, decreases w/ # times/yr each $ changes hands, aka "Velocity of Money"
Income Velocity of M

\[Y = \text{Nominal Income} \ [\$/yr] \]
\[M = \text{Nominal Money Stock} \ [\$] \]
\[\frac{M}{Y} \ [\text{yrs}] \leq \text{avg time each \$ is held} \]

\[V = \frac{Y}{M} \ [\text{yrs}^{-1}] = \text{Income Velocity of M} \]

\[\leq 5 \text{ times each \$ changes hands/yr.} \]

\[\text{"Velocity" for short.} \]

\[\text{Transaction Velocity} \]
\[T = \text{total transactions/yr} \]
\[V_T = \frac{T}{M} = \text{actual } 5 \text{ times avg \$ changes hands/yr.} \]

\[\text{but } T \text{ harder to measure, so rarely used.} \]

\[T \gg Y, \text{ so } V \ll V_T \]
Quantity Equation
\[V = \frac{Y}{M} = \frac{Py}{M}, \quad y = \frac{Y}{P} \]

\[\Rightarrow \quad MV = Py \quad \text{(Eqn)} \]

\[\Rightarrow \quad P = \frac{MV}{Y} \]

\[\circ \quad MP \rightarrow P \uparrow \]
\[\circ \quad V \uparrow \rightarrow P \uparrow \]
\[\circ \quad y \uparrow \rightarrow P \uparrow \]

* Identically true since \(V := \frac{Y}{M} \)

* Reflects QTM if \(V \rightarrow V^* = \frac{Y}{M_0} \)

 since then \(P \rightarrow P^* = \frac{M}{M_0} \)
Dynamic Form of Q-Eq'n.

Time 0:

\[
MV = PY = (a+b)(c+d) = ac + ad + bc + bd
\]

Time 1:

\[
(M+\Delta M)(V+\Delta V) = (P+\Delta P)(Y+\Delta Y)
\]

\[
\Rightarrow MV + M\Delta V + V\Delta M + \Delta M \Delta V = MV + P\Delta Y + Y\Delta P + \Delta P \Delta Y
\]

\[
\Rightarrow \frac{\Delta M}{M} + \frac{\Delta V}{V} + \frac{M\Delta V}{MV} = 0
\]

\[
\Rightarrow \frac{\Delta P}{P} + \frac{\Delta Y}{Y} + \frac{ Folio}{Y} = 0
\]

\[
\Rightarrow \frac{\Delta M}{M} + \frac{\Delta V}{V} = \frac{\Delta P}{P} + \frac{\Delta Y}{Y}
\]

Q-Eq'n

(Dynamic Form)
Q-Eq'n: \[\frac{\Delta M}{M} + \frac{\Delta V}{V} = \frac{\Delta P}{P} + \frac{\Delta Y}{Y} \]

Implications of Dynamic Q Eq'n.

\[\frac{\Delta P}{P} = \frac{\Delta M}{M} + \frac{\Delta V}{V} - \frac{\Delta Y}{Y} \]

Inflation =

Money growth

+ Velocity growth

- Real income growth.

Eg

\[\frac{\Delta M}{M} = 5\% \]

\[\frac{\Delta V}{V} = 3\% \]

\[\frac{\Delta Y}{Y} = 0 \quad (V: \text{const}) \]

\[\Rightarrow \frac{\Delta P}{P} = (5\%) + (0) - (3\%) \]

\[= +2\% \]

But if \(\frac{\Delta V}{V} = -4\% \), some \(\frac{\Delta M}{M}, \frac{\Delta Y}{Y} \)

\[\Rightarrow \frac{\Delta P}{P} = (5\%) + (-4\%) - (3\%) \]

\[= -2\% \]
Similarly,

\[
\frac{\Delta V}{V} = \frac{\Delta P}{P} + \frac{\Delta Y}{Y} - \frac{\Delta M}{M}
\]

\[
\frac{\Delta M}{M} = \frac{\Delta P}{P} + \frac{\Delta Y}{Y} - \frac{\Delta V}{V}
\]

Q. Eq'n \Rightarrow

If \(V = \text{const.} \left(\frac{\Delta V}{V} = 0 \right) \),

need \(\frac{\Delta M}{M} = \frac{\Delta Y}{Y} \) for \(\frac{\Delta P}{P} = 0 \)

— Milton Friedman "Monetarist" prescription for P-stability.
Inflationary Dynamics

Actual inflation driven by

1. Excess S or D for M
 Leads to Q.T. in Long Run.

2. Public's inflationary expectations
 Causes π inertia

3. Microeconomic S&D shocks
 Makes month-to-month π very noisy.

② and or ③ can lead P away from Q.T. equilibrium, but eventually
① will pull it back.
Price Controls

M+I 3.5, 3.6

- Why not fix prices by law?

Price Ceiling

- World War II

- Vietnam
 1971-74

- Gas Prices
 1972-74, 1975

Price Floors

- New Deal 1930's
Price Ceiling
\[\bar{P} < P_0 \]
\[\Rightarrow Q^D > Q^S @ \bar{P} \]

\[\Rightarrow \text{Suppressed Inflation} \]
- Shortages \(Q^D - Q^S \)
- Quality Deterioration
- Rationing (WWII)
- Black Markets

Some consumers willing to pay \(> P_0 \)

WWII - Office of Price Admin. (OPA)

Vietnam / Nixon 1971-74
- Gas controls briefed again 1974.
Nixon Price Control Period
1971-74

1972 -
Measured to hold low, shortage build.

1973 -
\(p < p^* \), shortage acute, esp. grain in Fall,

1974 -
\(p \) catches up to \(p^* \). Measured \(\epsilon > 10\% \), then falls abruptly after \(p \) catches up.
Price Floors

\[
P > P_0
\]

\[
\Rightarrow \quad Q^s > Q^d
\]

\[
\overline{\text{Suppressed Deflation}}
\]

- Unsold Output
- Unemployment

New Deal, 1930's.
Price Floors in Great Depression (1929-1941)

Herbert Hoover (29-33)
- Successfully urged industry not to cut wages
 \[\Rightarrow \text{Real wages} \uparrow \text{as} \ P \downarrow, \text{Unemployment?} \]
- Encouraged Trade Union.

 Maintained Price, Cut Output.

(See Ohanian working paper, "What or Who caused the Great Depression?"

For New Deal (33-1941)
- Nat'l Recovery Admin. (NRA) 1933-35.
 - Imposed industrial cartels
 set min prices, cut output
- Ag. Adjustment Act 1933-36, 1938-
 created "Market Orders" (farm cartels)
 set min prices, cut output
- Wagner Act (1935)
 - Majority of workers can form unions
 union wages on all existing, new workers
- Minimum Wage (1938)

Result = U remained high, output depressed throughout decade of 30's.
Apart from transitory deviations
from Q.T. equilibrium \(P = \frac{M}{m^0} \),
does \(V \) change?

If so, why?
\[V = \frac{Y}{M} = \frac{P_Y}{M} = \frac{Y}{m} \]
M1 velocity = \frac{\gamma}{M}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{Graph showing M1 velocity over time from 1950 to 2000.}
\end{figure}
Why does V change?

1. Nominal interest rate

 $i \uparrow \Rightarrow V \uparrow$, $m^d \downarrow$

2. Economics of scale?

 $\gamma \uparrow \Rightarrow \frac{m^d}{\gamma} \downarrow \Rightarrow V \uparrow$?
Overlay of V, i shows-

- Uptrend in i accounts for uptrend in V, 1950s - 1980

- Short moves in i often not reflected in V.

- Down trend in i, 1980-95 reverses uptrend in V

- V responds to swings in i, 1980-95.

- But V does not return to 1950's levels as i does.

\[\Rightarrow \]

1. V rises with i

2. Economies of scale make V rise with V over time as well.
Why does \(i \) change?

\[
i = r + \tau^e
\]

\(i \) = Nominal interest rate
\(r \) = real interest rate
\(\tau^e \) = expected inflation

- \(r \) determined in L.R. by savings, investment, independently of \(\tau, \tau^e \) (Loanable Funds Model)
- \(\tau^e \) determined by past \(\tau \) by Adaptive Learning

\(\Rightarrow \) feedback from \(\tau \) to \(i \), \(V \).
Money Demand $m^0(y, i)$
(for real money balances)

$i = \text{nominal interest rate on loans} = \text{opportunity cost of holding } M$
if M pays no interest.

$m^0 \uparrow$ with y,
$m^0 \downarrow$ with i.

\[\begin{array}{c}
\text{i} \\
\text{m}^0 \text{ (given high } y) \\
\end{array}\]

\[\begin{array}{c}
\text{m}^0 \text{ (given low } y) \\
\text{m/p} \\
\end{array}\]
McCulloch (1997) m^0 estimates (M1)

$$m^0 = (\text{const}) \ y^{.42} \ \exp(-.028 \ i)$$

(i = %/yr)

$$\Rightarrow V = \frac{Y}{M} = \frac{Y}{m} = (\text{const}) \ y^{.58} \ \exp (.028 \ i)$$

so $V \uparrow \Rightarrow y \uparrow \Rightarrow i \uparrow$,

up trend in $y \Rightarrow$ up trend in V
Real M1 Demand $m^0(y, i)$

![Graph showing the relationship between real M1 demand and M/P, with labels for Y1973, Y1993, and Y1954.](image)

M/P, $\$ billions (1987)$

\dot{y}, \dot{I} (3-mo T Bill rate)
Velocity Boost Inflation

\[\pi = \frac{\Delta m}{m} + \frac{\Delta V}{V} - \frac{\Delta Y}{Y} - \Phi_0 \sim' \]

\[\text{if } \frac{\Delta m}{m} \uparrow \]

\[\rightarrow \pi \uparrow \]

\[\rightarrow \pi_0 \uparrow \text{ (by Adaptivity Learning)} \]

\[\rightarrow i \uparrow \text{ (by Fisher's ![image](https://via.placeholder.com/150))} \]

\[\rightarrow m_0 \downarrow \]

\[\rightarrow V \uparrow \text{ (since } V = \frac{Y}{m} \text{)} \]

\[\rightarrow \frac{\Delta V}{V} > 0 \text{ as } V \uparrow \]

\[\rightarrow \text{extra inflation during transition} \]

\[\pi > \frac{\Delta m}{m} - \frac{\Delta Y}{Y} \text{ as } V \uparrow. \]
Velocity Drag Deflation

\[\frac{\Delta m}{m} \downarrow \rightarrow \pi \downarrow \rightarrow \pi e \downarrow \quad (\text{by AE}) \]

\[\rightarrow \zeta \downarrow \quad \text{by Fischer Eqn} \]

\[\Rightarrow m \uparrow \]

\[\rightarrow V \downarrow \]

\[\Rightarrow \frac{\Delta V}{V} < 0 \quad \text{as } V \downarrow \]

\[\Rightarrow \pi < \frac{\Delta m}{m} - \frac{\Delta y}{y} \quad \text{as } V \downarrow. \]

May result in unintended deflation.
Self - Generating Inflation

Possible in theory with fixed M,

Suppose $\frac{\Delta M}{M} = \frac{\Delta Y}{Y}$, so $\Pi = 0$ if $V; \text{const}$, but supply shock pushes P^Π.

Vicious Circle of

Self - Generating Π.

when

- Π^e responds quickly to Π

- and

- Π^D responds strongly to Π^e, i
Self-Generating Inflation

Possible in theory with fixed M.

Suppose $\frac{\Delta M}{M} = \frac{\partial y}{y}$, so $\Pi = 0$ if $V = \text{const}$, but supply shock pushes P^\uparrow.

$P^\uparrow \rightarrow X \rightarrow \Pi^e \uparrow \rightarrow V \uparrow \rightarrow m^0 \uparrow$

P stable when

- Π^e responds slowly to Π
- m^0 responds weakly to i

In practice, runaway Π always associated with runaway $\Delta M/M$.
Why do gov'ts often allow \(\frac{\Delta M}{M} > \frac{\Delta Y}{Y} \)?

\(\pi > 0 \) ?

3 Motives for \(\frac{\Delta M}{M}, \pi \):

1. Inflationary Finance
 \[\frac{M + I_5}{M} \]

2. Stimulate \(Y \), reduce Unemployment
 \[\frac{M + I_6}{M} \]

3. Reduce \(r \) and/or \(i \).
 \[\frac{M + B}{M + B} 19, 21 \]