Lecture 7

Inflation and Unemployment

M&I 6

Adaptive vs “Rational” Expectations

M&B 19, p. 24
Inflation and Unemployment

Second of 3 motives gov’t may have for $\Delta M/M$, π:

1. Inflationary Finance (Seigniorage)
2. Reduce U / stimulate y ← Today
3. Reduce i and/or r (M&B 19)
The Phillips Curve (PC)

Observed negative correlation between Inflation π and Unemployment U.

π vs U, 1956-1969:

(Phillips 1958 originally used earlier UK data and $\Delta W/W$, but graph similar.)

(PC drawn as straight line for simplicity.)

Economists (eg Samuelson and Solow 1960) originally thought PC gave policy makers a *permanent tradeoff* between π and U:

π and U both bad, but suggested Fed should encourage a little π to reduce U.

(Nobel Prizes, 1970, 1987)
However –
PC shifted over time –
Outward, 1953-83

“Stagflation” became a concern:
High U and high π!

Is economy doomed to ever higher U and π?
“Stagflation”

SRPC = Short-Run Phillips Curve
low, 1953-69
highest, 1979-83
But then SRPC quickly moved back down, 1983 – 2008:

- '50s, '60s – low
- '70s – rising fast
- '79-'83 – highest
- '84-'93 – much lower
- '95-'08 – like '60s.

1. Why does PC shift?

2. Why is there a SR tradeoff?
Why does π affect U, y?

No π: D_0, S_0, P_0, Q_0
Why does π affect U, y?

No π: D_0, S_0, P_0, Q_0

Fully anticipated $\pi = \pi^e$:
- $D \uparrow$ to D_1, vertically by π^e,
- $S \uparrow$ to S_1, vertically by π^e.

$\Rightarrow P \uparrow$ to P_1 by π^e, as expected,
- Q remains Q_0

$\Rightarrow \pi = \pi^e$ does not affect production or U.

Diagram:
- Price P:
 - P_0,
 - P_1
- Quantity Q:
 - Q_0
- Demand D:
 - D_0,
 - D_1
- Supply S:
 - S_0,
 - S_1
Why does π affect U, y?

No π: D_0, S_0, P_0, Q_0

Unanticipated π, caused by $M/P > m^D$:
- $D \uparrow$ to D_2, horizontally, by Walras’ Law,
- S unchanged.

\Rightarrow $P \uparrow$ to P_2, $\pi > \pi^e$,
- $Q \uparrow$ to Q_2

$\Rightarrow \pi > \pi^e$ increases production, reduces U.
Why does π affect U, y?

No π: D_0, S_0, P_0, Q_0

Unanticipated DEflation, caused by $M/P < m^D$:
$D \downarrow$ to D_2, horizontally,
by Walras’ Law,
S unchanged.

\Rightarrow $P \downarrow$ to P_3, $\pi < \pi^e$,
$Q \downarrow$ to Q_3

$\Rightarrow \pi < \pi^e$ DEcreases production,
INcreases U.

![Diagram of Typical Market](image)
Natural Unemployment Rate Hypothesis:

If \(\pi \) fully anticipated
(as in Long Run),
U unaffected by \(\pi \), tends to
“Natural Unemployment Rate” \(U_N \).

\[\Rightarrow \text{Long Run Phillips Curve (LRPC) vertical at } U_N \]
\((\pi = \pi^e) \)

\[\text{when } \pi \text{ on vertical axis,} \]
\[U \text{ on horizontal axis} \]
Natural Unemployment Rate Hypothesis:
(Milton Friedman, Edmond Phelps, 1968)

But –

If $\pi \neq \pi^e$ (as in Short Run),

$\pi > \pi^e \rightarrow U < U_N$,

$\pi < \pi^e \rightarrow U > U_N$.

\Rightarrow There is a permanent tradeoff between unanticipated π & U.
Natural Unemployment Rate Hypothesis:
(Milton Friedman, Edmond Phelps, 1968)

But –

If $\pi \neq \pi^e$ (as in Short Run),

$\pi > \pi^e \rightarrow U < U_N$,
$\pi < \pi^e \rightarrow U > U_N$.

⇒ There is a permanent tradeoff between unanticipated π & U.

And, there is a different Short Run PC (SRPC) for every π^e,
intersecting LRPC at π^e.
Acceleration Hypothesis
(Hayek, *A Tiger by the Tail*, 1972)

Target $U^* < U_N$ attainable, but only with *accelerating* π:

$\pi^e \quad \pi$ for $U = U_N$

| 0% | 5% |

π^e
Acceleration Hypothesis
(Hayek, *A Tiger by the Tail*, 1972)

Target $U^* < U_N$ attainable, but only with
accelerating π:

\[
\begin{array}{ll}
\pi^e & \pi \text{ for } U = U_N \\
0\% & 5\% \\
5\% & 10\%
\end{array}
\]
Acceleration Hypothesis
(Hayek, *A Tiger by the Tail*, 1972)

Target $U^* < U_N$ attainable, but only with **accelerating** π:

<table>
<thead>
<tr>
<th>π^e</th>
<th>π for $U = U_N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>10%</td>
<td>15%</td>
</tr>
<tr>
<td>etc!</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing Actual π vs π^e with labels: LRPC, SRPC, $\pi^e = 10\%$, $\pi^e = 5\%$.]
Acceleration Hypothesis
F.A. Hayek, A Tiger by the Tail, 1972, Nobel Prize 1974

Target $U^* < U_N$ attainable, but only with **accelerating π**:

π^e for $U = U_N$

- 0% 5%
- 5% 10%
- 10% 15%
- etc!

If π ever stops accelerating, you are stuck with high π and $U = U_N$.

Graph: The graph illustrates the relationship between U and π, with U^* and U_N representing the feasible and attainable targets, respectively. The scenario indicates that to maintain an achievable U^*, π must accelerate at a certain rate to avoid getting stuck at a high π and $U = U_N$. The diagram highlights the importance of policy adjustments to prevent economic traps.
Disinflation (stopping ongoing π)

Requires $U > U_N$
if expectations adaptive

A. Cold Turkey
 ($\pi \to 0$ immediately)
 U goes very high,
 Sharp recession
 or depression.
Disinflation (stopping ongoing π)

Requires $U > U_N$ if expectations adaptive

A. Cold Turkey ($\pi \rightarrow 0$ immediately)
 U goes very high,
 Sharp recession or depression.
 But $\pi^e \downarrow$ quickly,
 U returns to U_N.
Disinflation (stopping ongoing π)

Requires $U > U_N$ if expectations adaptive

B. Gradualism
$U_{Max} = \text{Max tolerable } U$
$\pi \downarrow \text{ in small steps}$
$\Rightarrow U \leq U_{Max}$
but takes longer than Cold Turkey!

Actual π

U_{Max}

LRPC

SRPC, $\pi^e = 15\%$
SRPC, $\pi^e = 10\%$
SRPC, $\pi^e = 5\%$
SRPC, $\pi^e = 0\%$
Natural U Rate U_N also known as NAIRU:
Non-Accelerating Inflation Rate of Unemployment
similar idea, but suggests low U causes π.

Natural Rate Hypothesis (NRH) \Rightarrow
M policy may affect U, y temporarily,
but must be neutral on average to prevent accelerating π.
\Rightarrow Stimulus during recessions requires restriction during good times.
This principle incorporated into Taylor Rule (M&B 21)
Caveat -- Natural Rate may vary with

• Efficiency of Labor Market, eg internet
• Turnover of jobs, eg after WW II
• Degree of unionization
• Composition of Labor Force
 • Postwar baby boom
 • Institutional population “not part of Labor Force”:
 • military ↑ 900,000 1965-73
 • prison pop. 500,000 in 1980, 2,400,000 in 2008.
• Minimum Wage
 • ↑ 41%, 2007-2009, affects low-skill most
• Unemployment compensation
 • up to 99 weeks in current recession, just renewed thru 1/12
 • never before so long
 • avg. duration of U = 37.1 wks. 2/11, vs 20.8 wks. 6/83.
Variation in U_N over time

(McCulloch 2007 estimates)

<table>
<thead>
<tr>
<th>Year</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960-70</td>
<td>5.7%</td>
</tr>
<tr>
<td>1980</td>
<td>6.7%</td>
</tr>
<tr>
<td>1990</td>
<td>6.2%</td>
</tr>
<tr>
<td>2000</td>
<td>5.2%</td>
</tr>
<tr>
<td>2007</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
2009, 2010 U abnormally high, relative to π!

¿ Caused by extended U benefits? 2007-09 ↑ in Min. W?
Expectations Models

1. **Adaptive Learning (AL)**

 (Evans and Honkapohja, 2001)

 Expectations based on past experience,
 with declining, time-varying weights

 Past π best single predictor of future π,
 though U, M policy, etc. may also be useful

 Modern generalization of **Adaptive Expectations (AE)**

 (Friedman, Cagan, 1950s, 60s)

2. **Equilibrium or “Rational” Expectations (“RE”)**

 Expectations = best forecast using

 true structure of economy
 true intentions of policy makers
 all data, public and private

 Dominant assumption in economics, 1970s-90s

 Lucas, Sargent, Wallace, Prescott

Implications of AL, AE:

• $P \rightarrow P^*$ only gradually, since P^* unknown,
 π^e drives π in SR

• Policy can fool public in SR
 • $s^* > s_{\text{Max}}$ feasible
 but \Rightarrow accelerating π
 • $U^* < U_N$ feasible
 but \Rightarrow accelerating π

• Disinflation costly in SR
 since $U > U_N$, s below Laffer Curve
 until $\pi^e \downarrow$ to π

• High π costly in terms of high future π^e
• Low π a good investment in low future π^e
Implications of Equilibrium ("Rational") Expectations:

- \(P \rightarrow P^* \) immediately,
 since public knows \(M, m^D \), has taken Econ 520
 \(\Rightarrow P \) tracks \(M/m^D \) with no lag

- Policy can’t fool public, not even in SR
 - \(s^* > s_{\text{Max}} \), \(U^* < U_N \) **not** feasible
 \(\Rightarrow P \rightarrow \infty \) immediately
 - i.e. \(1/P \rightarrow 0 \), \(M \) worthless, since
 public knows policy inconsistent

- Disinflation costless
 since \(\pi^e \downarrow \) immediately, so no recession

- High \(\pi \) costless in terms of high future \(\pi^e \)
 since \(\pi^e \) doesn’t depend on past \(\pi \)

- Low \(\pi \) has no payoff in terms of low future \(\pi^e \)
 for same reason
Equilibrium ("Rational") Expectations, cont’d.

- Economic orthodoxy, 1970s-90s
 - Lucas, Sargent, Wallace, Prescott
 - Useful exercise to study internal consistency of policies
 - But unrealistic as model of actual expectations, IMHO*
- “Rational” a misnomer
 - “Equilibrium Expectations” more accurate, IMHO

1990s, 2000s –

Movement away from “RE”:
 “Bounded Rationality”
 -- Sargent
 “Adaptive Learning”
 -- Evans and Honkapohja
 “Adaptive Least Squares” estimation procedure
 -- McCulloch

* In My Humble Opinion