Ponzi Schemes and Price Bubbles

Charles Ponzi:

• immigrated from Italy in 1903

• convicted of forgery in Canada

• 10 days after being released, arrested for smuggling aliens into the US

• developed his famous postal coupon scheme, and was sent to prison for it

• while awaiting appeal, started a real estate pyramid scheme in Florida

• tried to escape on a ship bound for Italy

• illegally kidnapped from the ship, served his time, and afterwards was deported to Italy
died in Brazil in 1949 with $75 to his name.

The Postal Coupon Scheme

In 1906, the US and 60 other countries agreed to sell "postal reply coupons" at a fixed price in the local currency, exchangable for a postage stamp in any of the countries. This was supposed to make it easy to prepay a return postage.

"The coupon in Spain cost the equivalent of about one cent in American money, I got six cents in stamps for the coupon here. The first month $1,000 became $15,000. I began letting in my friends. First I accepted deposits on my note, payable in ninety days, for $150 for each $100 received. Though promised in ninety days I have been paying in forty-five days." [N.Y. Times, Jul. 30, 1920, at 1, col. 7.].
Ponzi collected money from investors, but did not actually trade in the coupons. (Imagine the cost!) His *Securities Exchange Corporation* initially paid off the investors, not from profits but from deposits of new investors.

The *Hanover Trust Company* knew about the fraud and helped him manage the accounts.

After about a year, 10,000 investors had invested $9,500,000. Being investigated for fraud, and unable to have the number of new investors increasing by 50% every 3 months, there was a crash. His assets of $1,500,000 was far less than what he owed.

- related issue of chain letters and pyramid schemes
© Courtesy of Boston Public Library, Print Dept. Photo by Leslie Jones
Price Bubbles

Suppose a stock pays a dividend of $1 every year (forever, starting next year) and the real interest rate is 10%. Then the present value of the dividends is:

\[\frac{1}{1.1} + \frac{1}{(1.1)^2} \ldots = \$10. \]

(With $10, you could invest the $10, have $11 tomorrow, pay $1, invest the remaining $10 ...)

The *market fundamental* is $10. If the price is $20, there is a *price bubble* in the amount of 20-10 = $10.

Could there be a bubble in stock prices?
- Dutch tulip bulb mania of the 1600's.
- internet stocks?
More generally, suppose the real interest rate is \(r \) and the dividend per year is \(d \). The market fundamental is: \(d/r \).

Suppose the stock price at time 1 is:
\[p^1 = d/r + B, \]
so the size of the bubble is \(B \).

If today’s price is \(p^t \), and tomorrow’s price is \(p^{t+1} \), and there is no uncertainty, they must satisfy the no-arbitrage equation:

\[(1+r) p^t = p^{t+1} + d. \quad \text{(NA)} \]

Plugging in \(p^1 = d/r + B \) and solving for \(p^2 \):

\[p^2 = (1+r)d/r + (1+r)B - d, \]

which simplifies to: \(p^2 = d/r + (1+r)B \).
\[p^2 = \frac{d}{r} + (1+r)B. \]
\[p^3 = \frac{d}{r} + (1+r)^2 B, \text{ etc.} \]

If there is no bubble, the stock always sells for the fundamental price, \(\frac{d}{r} \). If there is a bubble, it must be growing at the rate \(r \)!

Prices grow without bound. Is this possible?

Overlapping Generations

Suppose that a young consumer buys the stock in each period \(t \) and sells in period \(t+1 \).

Also suppose that the resources (initial wealth) of the young is growing over time at the rate \(g \). The first generation has \(W \) to spend in period 1, the next has \((1+g)W \) to spend in period 2, etc.
<table>
<thead>
<tr>
<th>money flowing in (Price from NA)</th>
<th>resources available</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p^1 = d/r + B$</td>
<td>W</td>
</tr>
<tr>
<td>$p^2 = d/r + (1+r)B$</td>
<td>$(1+g)W$</td>
</tr>
<tr>
<td>$p^3 = d/r + (1+r)^2 B$</td>
<td>$(1+g)^2 W$</td>
</tr>
<tr>
<td>$p^4 = d/r + (1+r)^3 B$</td>
<td>$(1+g)^3 W$</td>
</tr>
</tbody>
</table>

- If $r > g$, then eventually the required money flowing in to maintain NA will exceed the resources available. No matter how small the bubble starts, it eventually cannot be sustained.

- If $g \geq r$, the resources are growing at least as fast as the bubble, and it can be sustained indefinitely.

- Even if $d = 0$, this stock can have a positive price and not crash if $g \geq r$: rare stamps, beanie babies, baseball cards, ...
Social Security

Consider the following *pay as you go* system:

<table>
<thead>
<tr>
<th>premium from workers, benefits for retired</th>
<th>resources available</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>W</td>
</tr>
<tr>
<td>(1+r)B</td>
<td>(1+g)W</td>
</tr>
<tr>
<td>(1+r)^2 B</td>
<td>(1+g)^2 W</td>
</tr>
<tr>
<td>(1+r)^3 B</td>
<td>(1+g)^3 W</td>
</tr>
</tbody>
</table>

- Everyone receives their premium, with interest, as their retirement benefit.
- If \(r > g \), this cannot be sustained, because workers will eventually have to contribute more than their available resources.
• If \(g \geq r \), the premium is falling or staying constant, as a fraction of wealth. The system can be sustained. The initial old receive benefits without contributing, and everyone else gets out what they put in!

What distinguishes a price bubble (or pay-as-you-go social security) from a Ponzi scheme?

*Nothing if \(r > g \)! If \(g \geq r \), it can be sustained with no crash. Ponzi’s problem was that he promised a return of \(r = 0.50 \) per 90 days, and the flow of new resources coming in was limited by the growth rate of real wealth in the economy \((g = 0.04 \text{ or less}). \)