
Mixed Strategies and Expected Payoffs

An important concept is a player’s beliefs about what
strategies the other players are choosing.

Sometimes we may be certain that a player will play a
particular strategy, but sometimes we may think that a
player is "likely" to play a particular strategy, or that the
strategy is "plausible."

We formalize this strategic uncertainty as a probability
distribution over the opponent’s strategies.

For example, if player 1 is sure that player 2 will defect in
the Prisoner’s Dilemma, she assigns a probability of zero
to cooperate and a probability of one to defect.

In the Matching Pennies Game, if player 1 believes that
player 2 is equally likely to choose heads and tails, she
assigns a probability of 12 to heads and a probability of

1
2

to tails.



Definition: A belief of player i is a probability distribution
over the strategies of the other players, which we denote
as θ−i ∈ 4S−i.

To be a valid probability distribution, the probability of
each strategy profile of the other players must be non-
negative, and the sum of the probabilities across all pro-
files must equal one:

θ−i(s−i) ≥ 0 for all s−i ∈ S−iX
s−i∈S−i

θ−i(s−i) = 1.

For the Matching Pennies Game, if player 1 believes that
player 2 is equally likely to choose heads and tails, her
beliefs according to our notation would be:

θ2(H) =
1

2

θ2(T ) =
1

2



One interpretation of beliefs is that player 2 is consciously
trying to randomize between H and T . (Maybe he is
flipping his coin to determine his action.)

Another interpretation of beliefs is that player 2 is not
randomizing at all, but that player 1 is uncertain of player
2’s strategy choice.

—Here is a subtle point: In games with 3 or more players,
is it sensible for player 1 to believe that players 2 and 3
randomize in a correlated (coordinated) fashion?



Related to beliefs is the concept of a mixed strategy. A
mixed strategy for a player arises when the player selects
his strategy according to a probability distribution. For a
mixed strategy by player i, we use the notation σi ∈ 4Si.

For the special case in which a player assigns probability
one to a particular strategy, this is called a pure strategy.
Thus, a pure strategy is a special case of a mixed strategy.

In the text, Watson (Chapter 4) distinguishes between (i)
beliefs that player 1 has about player 2’s strategy choice
and (ii) the mixed strategy chosen by player 2. Other
game theorists believe that player 1’s beliefs about player
2’s strategy is another interpretation of a mixed strategy.

—Wrestling example



Beliefs and Payoffs

When player i has beliefs about other players’ strategy
choices, she faces an uncertain outcome. How does she
evaluate her payoff?

We use the concept of expected payoff, which is the math-
ematical expectation of her payoff. Basically, we take an
average, but "weight" the outcomes with the probability
of that outcome occurring.

ui(si, θ−i) =
X

s−i∈S−i
θ−i(s−i)ui(si, s−i)



Here is an example from the text.

player 2
L M R

U 8, 1 0, 2 4, 0
player 1 C 3, 3 1, 2 0, 0

D 5, 0 2, 3 8, 1

Suppose player 1 believes that player 2 will play strategy
L with probability 12, strategy M with probability 14, and
strategy R with probability 14.

That is, θ2(L) =
1
2, θ2(M) = 1

4, θ2(R) =
1
4.

Then player 1’s expected payoff from playing U is

u1(U, θ2) =
1

2
(8) +

1

4
(0) +

1

4
(4) = 5.



Rationality and Common Knowledge

Game theorists usually assume that players are rational.
The definition of rationality is that a player selects the
strategy that he most prefers. In other words, players
seek to maximize their expected payoff, given their beliefs
about the strategies of the other players.

Notice that once we know the players’ beliefs, rationality
tells us how to solve the game. The difficult part of
solving games is figuring out which beliefs make sense.

Assuming that players are rational does not mean that
they are selfish or seek to maximize their own monetary
gains. A "payoff" is not necessarily the same as a mone-
tary gain. Our framework is consistent with both altruism
and risk aversion:



1. Altruism can be modeled as making a player’s pay-
off increase when the monetary gains of other players
increase. Consider the Dictator Game, where player 1
decides how to split $100 between herself and player 2,
and player 2’s only strategy is to accept the money.

Thus, S1 = {1, 2, ..., 100} and S2 = {accept}.

If player 1 is selfish, his payoffs are

u1(s1, s2) = s1.

If player 1 is very altruistic, and cares only about the
monetary payoff of the most disadvantaged player, his
payoffs are

u1(s1, s2) = s1 if s1 ≤ 50
u1(s1, s2) = 100− s1 if s1 ≥ 50.

If player 1 is Mother Theresa, and cares only about the
monetary payoff of player 2, her payoffs are u1(s1, s2) =
100− s1.

More complicated sorts of interdependent preferences are
possible.



2. Risk aversion can be modeled as making a player’s
payoff a concave function of his monetary payoff. Maxi-
mizing expected payoff does not mean that you are willing
to take a fair bet.

Consider the version of the matching pennies game in
which the monetary payoffs are given by:

player 2
heads tails

player 1 heads 1,−1 −1, 1
tails −1, 1 1,−1

Now suppose that when a player receives a monetary pay-
off of 1, his/her utility is 1, but a monetary payoff of −1
yields a utility of −2. (Suppose that players are betting
their lunch money, so that winning means a fancy lunch,
but losing means going hungry.) The actual payoffs are
then given by:



player 2
heads tails

player 1 heads 1,−2 −2, 1
tails −2, 1 1,−2

If player 1 believes that player 2 is choosing heads and
tails with equal probability, so θ2(H) = θ2(T ) =

1
2, then

his expected payoff from choosing heads (or tails) is:

u1(U, θ2) =
1

2
(1) +

1

2
(−2) = −1

2
.

Risk aversion makes the players better off not even play-
ing the game and receiving a payoff of zero.



Common Knowledge

In modeling a strategic situation as a game, we assume
that the players share a common understanding of the
game.

If player 2 is not sure whether she is playing matching
pennies or the prisoner’s dilemma, then that uncertainty
should have been incorporated into the payoff structure,
so in fact a totally different game is being played.

If player 1 is not sure that player 2 knows player 1’s pay-
offs, then again the true game must incorporate this un-
certainty and is much more complicated.

A fact "F" is common knowledge if each player knows
F, each player knows that the other player knows F, each
player knows that the other player knows that each player
knows F, and so on.

Thus, we assume that the game is common knowledge.
One way to achieve common knowledge in an experimen-
tal setting is to have the instructions read to the players
as they are sitting together in the same room.



Puzzles involving Common Knowledge

1. Suppose Jack has arranged to meet Jill at restaurant
A, but finds out it is closed. Jack texts Jill to meet at
restaurant B instead. Jill texts Jack that she received the
message and will meet at restaurant B. When Jill arrives
at restaurant B, Jack is not there at the scheduled time.

Is Jack just running late, or did he not receive the confir-
mation message and think that Jill would be at restaurant
A?

The problem is that you can never achieve common knowl-
edge by texting. Better to call instead.

2. One football official standing underneath each goal
post when there is a field goal attempt. Why do the
officials take longer to call a field goal good when it splits
the uprights than call a field goal no good when it is wide
left or wide right?



3. A group of 10 people in a room are blindfolded, given
either a red hat or a black hat to wear, then told to take
off their blindfold without looking at their hat or letting
other people know their hat color. Thus, each person
observes the color of everyone else’s hat but not his/her
own.

Then the host tells the 10 people that at least one of
them has a black hat. The host then announces that she
will count from 1 to 10, and that any person that knows
his/her hat is black should shout "black hat." (You can
assume that it is common knowledge that the 10 people
are very smart, and that they like to show off and shout
"black hat" as soon as they know it, but would never take
a guess and risk the embarrassment of being wrong.)

Claim: If there are n black hats, then each of the people
wearing a black hat will shout "black hat" when the host
counts to n.



Solution to Hats Puzzle:

It is common knowledge that there is at least one black
hat. If there is only one, the person with the black hat
sees all red hats and shouts "black hat" when the host
counts to 1.

When no one shouts "black hat" when the host counts
to 1, it is common knowledge that there are at least two
black hats. If there are exactly two black hats, those two
people see only 1 black hat, and shouts "black hat" when
the host counts to 2.

When no one shouts "black hat" when the host counts to
2, it is common knowledge that there are at least three
black hats, and so on.



To solve the Hats Puzzle, we needed to go beyond com-
mon knowledge of the game itself, and also assume com-
mon knowledge of rationality of the players.

We are now ready to move from the definition of the game
to the solution of the game, starting with the implications
of common knowledge of rationality.

How realistic is it to assume common knowledge of ra-
tionality?

In some situations, it is pretty reasonable.

In other situations, people are boundedly rational. Ei-
ther they cannot perform required calculations or they
face cognitive limitations preventing them from logically
working out the rational strategy.

In still other situations, players are rational but they think
that others may not be rational.





Here is a two-player game that illustrates bounded ratio-
nality:

The numbers 1-9 are in the center of a board. First player
1 selects a number and moves it from the center to her
side of the board. Then player 2 selects one of the 8
remaining numbers and moves it from the center to his
side of the board. Then player 1 selects one of the 7
remaining numbers, and so on.

The first player to have exactly three of her/his numbers
add up to 15 wins the game, and the other loses. If
neither player has exactly three of her/his numbers add
up to 15, the game is a tie.


