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Abstract

In this paper we estimate long-run money demand for Japan with two functional forms that

allow for the liquidity trap, and compare the empirical results for these functional forms with those

for the standard log-level functional form. Estimating different functional forms leads to nonlinear

cointegration. We compare the out-of-sample prediction performance of the three functional forms.

Our empirical results indicate that the functional forms which allow for the liquidity trap are better

than the log-level functional form based on the prediction performance.
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1 Introduction

The theory of money demand implies that the money demand function is or is almost infinitely elastic

at low or zero nominal interest rates. This feature of the money demand function has important

implications for monetary policy. For example, the quantity of money that the central bank prints

does not have any effect on inflation or output. Keynes and monetarists were interested in this problem

which has been called the liquidity trap or the zero interest bound. Because of very low short-term

interest rates in Japan today and the lowest short-term interest rates in the United States in 45 years,

many researchers are interested in this problem again. For example, see Krugman (1998), Orphanides

and Wieland (2000), Jung, Terashashi, and Watanabe (2001), Woodford (2003), Eggertsson and

Woodford (2003), and Eggertsson (2004).1 Therefore, it is important to incorporate the liquidity

trap feature in estimating the money demand function. However, in the recent literature which

uses cointegration to estimate long-run money demand, the log-level (semi-log) functional form has

typically been used (see, e.g., Stock and Watson (1993), and Ball (2001)). The log-level form with

log money and the level of the interest rate does not incorporate the liquidity trap feature. A notable

exception is Hoffman and Rasche (1991), who use a log-log form.

In this paper we estimate long-run money demand for Japan with two functional forms that allow

for the liquidity trap: the log-log form and the form implied by the money in the utility function

with the constant elasticity of substitution (the MUFCES form for short). We compare the results

with the log-level form. These functional forms are motivated by theory. We compare the empirical

results for these two functional forms with those for the standard log-level functional form. Because

of very low short-term interest rates observed in Japan since 1995, this task is important. Different

functional forms lead to nonlinear cointegration as discussed by Bae and de Jong (2004), and we use

their Nonlinear Cointegration Least Square estimation technique.

Anderson and Rasche (2001) and Bae and de Jong (2004) estimate and compare different functional

forms of long-run money demand for the United States. Miyao (2003) uses structural break tests to

study the stability of long-run money demand with the log-linear and log-log functional forms. His

empirical results indicate a structural break for the log-linear form but no structural break for the

log-log form. Fujiki and Watanabe (2004) use the stability of long-run money demand with the log-log

form and confirmed Miyao’s finding that the log-log form is stable. Our paper is complementary to

1The functional form of Taylor-type interest rules used in these papers implicitly depends on the form of the rela-

tionship between velocity and the interest rate as in Taylor (1999), among other factors. Therefore, the functional form

depends on the shape of the money demand function.
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these two papers, but it is different from them in that we use the MUFCES form in addition to the

log-linear and log-log forms, compare different forms in terms of out-of sample prediction performance,

and take into account nonlinear cointegration.

Our empirical results indicate that the log-log and MUFCES functional forms that allow for the

liquidity trap are better than the log-level functional form in terms of the out-of-sample prediction.

The results were qualitatively similar between the log-log and the MUFCES forms and between coin-

tegration and nonlinear cointegration techniques.

2 Functional Forms of Money Demand

This section discusses the three main functional forms of money demand that are estimated in this

paper. The difference between the three forms arises because there are various plausible ways in which

the nominal interest rate enters the money demand function.

Much of the empirical work on money demand has estimated a conventional money demand func-

tion of the following functional form2

ln

(
Md

P

)
= β0 + β1 ln(Y ) + β2i, (1)

where Md denotes nominal money balances; P denotes the price level; Y is a “scale” variable that

proxies for the volume of transactions such as real GDP or consumption; and i is the nominal interest

rate which measures the opportunity cost of holding money. The parameter β1 is the income-elasticity

of money demand and β2 is the “semi-elasticity” of money-demand with respect to the interest rate.

Although this specification of money demand has been widely used in the empirical literature

on money demand, there are two important classes of models that give rise to other specifications.

The first class of models is based on the inventory-theoretic approach to money demand pioneered

by Allais (1947, Vol. 1, pp.235-241), Baumol (1952) and Tobin (1956). Consider an individual who

receives an income Y in the form of bonds. There is a fixed transactions cost b of converting interest-

bearing bonds into cash. Let K denote the real value of bonds converted into cash each time there is

a conversion. The total transaction costs γ incurred by the individual are given by

γ = b

(
Y

K

)
+ i

(
K

2

)
, (2)

where the first term represents conversion costs and the second term represents the interest cost on

average money holdings (K/2) over the period. Minimizing the transaction costs with respect to K

2See for example, Stock and Watson (1993).
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yields the following square-root law for optimal real money balances

Md

P
=

K

2
=

1

2

(
2bY

i

)1/2

. (3)

Expressing Equation (3) in logarithmic form, we obtain the following log-linear money demand func-

tion

ln

(
Md

P

)
= β0 + β1 ln(Y ) + β2 ln(i), (4)

where the parameters β1 and β2 represent the constant income- and interest-elasticities of money

demand that are implied to be 1/2 by the model.3

Miller and Orr (1966) extend the Allais-Baumol-Tobin analysis to the case in which cash flows

are stochastic while maintaining the assumption of a fixed transaction cost in converting bonds to

money. In the basic version of their model, cash flows follow a stationary random walk without drift

so that in a small time interval (1/t) the cash flow either increases or decreases by m dollars with

equal probabilities. The optimal rule for money holdings is a “trigger-target” rule. Whenever cash

balances reach the lower bound (the trigger) of zero, z dollars are converted from bonds to cash; when

cash balances reach the upper bound of h, (h − z) dollars of cash are converted to bonds. Miller and

Orr show that the optimal size of average cash balances is given by

Md

P
=

4

3

[
3b

4i
σ2

]1/3

, (5)

where σ2 = m2t is the daily variance of the changes in the cash balances. The Miller-Orr model also

implies a constant interest elasticity of money demand but the value is 1/3 rather than 1/2.

In more recent work Bar-Ilan (1990) extends the inventory-theoretic model further to allow for the

possibility of overdrafting by relaxing the assumption that the “trigger” be restricted to zero. Money

balances may fall below zero and, when they do, the individual has to pay a penalty at a rate p > 0 for

using the overdrafting facility. It is shown that for any finite nominal interest i and penalty rate p the

optimal trigger point is negative. Only in the special case when the penalty rate of using the credit

is infinitely high relative to the interest rate does the model yield the Allais-Baumol-Tobin result.

Since credit and money are very close substitutes, even small increases in the cost of holding money

relative to credit (a higher i/p ratio) results in substitution of credit for money, thereby yielding a

higher interest elasticity of money demand than the earlier models.

Another important class of models that have implications for the functional form of the money

demand function are those where real balances enter the utility function directly. This approach was

3Miller and Orr (1966) also use the inventory theoretic approach to modelling the optimal amount of money holdings.
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pioneered by Sidrauski (1967) and Brock (1974) and has since been widely used to study a variety of

issues in monetary economics. Money enters the utility function because it helps economize on the

time spent transacting and hence higher real balances are associated with higher leisure and hence

higher utility.4 Suppose that the representative household maximizes the lifetime utility function

U =

∞∑

t=0

βtu(ct,mt), 0 < β < 1 (6)

by choosing time paths for consumption (ct) and real balances (mt) subject to an appropriate economy

wide budget constraint. The first order conditions for maximizing utility yield

um(ct,mt)

uc(ct,mt)
= 1 −

1

(1 + rt)(1 + πt+1)
=

it
1 + it

, (7)

where rt is the real return on capital, φt+1 is the expected inflation rate and it denotes the nominal

interest rate. Equation (7) equates the marginal rate of substitution between real balances and

consumption to the relative price of holding money. If the household holds one less dollar of money, it

foregoes the opportunity to earn an interest payment it. Since this payment would be received next

period, it is discounted by the nominal interest rate to obtain its present value.

The demand for money can be derived from Equation (7) by positing a specific utility function for

the representative household. The following constant elasticity of substitution (CES) utility function

has often been used

u(ct,mt) =
[
αc1−β

t + (1 − α)m1−β
t

]1/(1−β)

, (8)

where 0 < α < 1 and β > 0, β 6= 1. With these preferences, the marginal rate of substitution between

real balances and consumption is given by

um

uc
=

(
1 − α

α

)(
ct

mt

)β

. (9)

Equating the marginal rate of substitution to the relative price of real money balances, we obtain the

following demand for money (in log form)

ln(mt) =
1

β
ln

(
1 − α

α

)
+ ln(ct) −

1

b
ln

(
it

1 + it

)
. (10)

This model implies a unit consumption elasticity of money demand. The interest elasticity of money

demand implied by this model is
∂ ln(mt)

∂ ln(it)
= −

1

b

1

1 + it
, (11)

which is a decreasing function of the nominal interest rate in terms of absolute value.

4Alternatively, one could assume that real balances help reduce transactions costs, so that higher real balances lead

to a greater proportion of income being spent on consumption. In this case real balances enter the individual’s budget

constraint rather than the utility function. See Brock (1974) and Feenstra (1986) for details.
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3 Estimation Results of Money Demand for Japan

3.1 Cointegration Methods

In this section the following three functional forms of the long-run money demand are estimated

by cointegration methods. Since the nominal interest rate shows a persistent serial correlation, the

assumption that rt is I(1) is generally accepted as a good approximation. We regard the long-run

money demand function as a cointegrating regression.

mt = β0 + β1it + ut (12)

mt = β0 + β1 ln(it) + ut (13)

mt = β0 + β1 ln

(
it

1 + it

)
+ ut (14)

where mt(= ln Mt

PtYt
) is the logarithm of the real money balance and it is the nominal interest rate.

Note that we impose the restriction of the unit income elasticity of the money demand. We allow it

and ut to be temporally dependent and ut to be serially correlated.

In Equations (13) and (14) the money demand becomes a nonlinear function of the interest rate.

To use the conventional linear cointegration methods, such as “Fully Modified OLS” (FMOLS) and

“Dynamic OLS” (DOLS), we must have different assumptions for different functional forms; i.e. it,

ln(it) and ln
(

it

1+it

)
must be assumed to be I(1) for Equations (12), (13) and (14), respectively.

However, if it is I(1), ln(it) and ln
(

it

1+it

)
cannot be I(1) in any meaningful sense and vice versa.

Because of this internal inconsistency, estimation results from the conventional linear cointegration

methods might not be directly comparable with each other. Therefore, along with the conventional

linear cointegration methods, we also consider a nonlinear cointegration method which has been

proposed recently by Bae and de Jong (2004). In their “Nonlinear Cointegration Least Square” (NCLS)

estimation technique, it is possible to estimate different functional forms under the one assumption that

it is I(1). However, the NCLS estimation method used in this paper has no asymptotic justification

for Equation (14). A theory has not been fully developed yet. Therefore, we also report bootstrap

confidence intervals along with asymptotic ones.

Since the NCLS estimation technique is relatively new, we illustrate how to implement the NCLS

estimation technique for the estimation of β1 in Equation (13). Let kn be an integer-valued positive

sequence that diverges to infinity at a slower rate than n such that knn−
p−2

3p+η → 0 for some η > 0 and
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p,5 and nj =
[

nj
kn

]
for j = 0, 1, 2, . . . , kn. Let zt = ln(inj−1+1) for nj−1+1 ≤ t ≤ nj for j = 1, 2, . . . , kn.

Then the NCLS estimator β̃1 is defined as an IV estimator that uses zt as the instrumental variable

for ln(it). Note that although β̃1 is a consistent estimator, it cannot be used for statistical inference

unless the limiting Brownian processes associated with it and ut are orthogonal, which is unlikely in

the case of the long-run money demand function. Therefore, the following fully modified type NCLS

estimation technique is used. The estimation procedure is as follows.

1. Calculate the residual, ût, from a regression by the NCLS estimation method.

2. Get a HAC estimate for the long-run covariance matrix of (ut,∆it), Ω̂, by using (ût, ∆it).

3. Calculate m̂†
t in a way analogous to the FMOLS,

m̂†
t = mt − Ω̂′

21Ω̂
−1
22 ∆it.

4. The fully modified version of the NCLS estimator β̂1 is defined as the NCLS estimator that is

calculated using the modified dependent variable m̂†
t instead of mt.

Note that now the usual “t and F -statistics” are valid because they achieve the correct significance

level conditionally on ∆it.

3.2 Data and Empirical Results

For the estimation of the Japanese long-run money demand function the quarterly data set from 1976:1

to 2002:4 is used.6 Since the data frequency is quarterly, we add quarterly seasonal dummies in the

regression. M2+CD, the Consumer Price Index (CPI), both the Gross Domestic Product (GDP) and

the Private Consumption (CON), and the lending rate of “City Banks” are used for money, price,

output, and nominal interest rate, respectively. Due to the financial “Big Bang” in Japan, we include

foreign banks’ accounts in M2+CD beginning in 1998:2.

Table 1 reports coefficient estimates, and its asymptotic and bootstrap confidence intervals. Since

no asymptotic and bootstrap confidence intervals contain zero, coefficient estimates are statistically

5The following assumption needs to be made regarding p. Let ut and ∆it be linear processes given by

ut =

∞X
i=0

φ1,iε1,t−i ∆it =

∞X
i=0

φ2,iε2,t−i

where εt = (ε1,t, ε2,t) is a sequence of independent and identically distributed (i.i.d.) random variables with mean zero.

E|εj,t|
p < ∞ for some p > 2 for j = 1, 2; for details, see Bae and de Jong (2004).

6Shinichi Nishiyama in the Bank of Japan kindly provided the data of M2+CD and the lending rate of “City Bank”.

For CPI, GDP, and the Private Consumption the Datastream was used.
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significant in all combinations of functional forms and estimation methods. Asymptotic and bootstrap

confidence intervals are generally similar, though bootstrap one is larger than asymptotic one. When

we compare the estimation results across the different functional forms, there are significant differences,

as expected. However, the estimation results are robust across the different estimation methods,

including the NCLS estimator.

To further address the question of which functional form is most appropriate for the Japanese

long-run money demand, we investigate out-of-sample prediction performances for the three different

functional forms. Table 2 reports the sum of squared error for two different methods of out-of-

sample prediction performance. Equations (13) and (14), which are nonlinear functions of the interest

rate, clearly outperform Equation (12), the linear one, in all estimation methods except DOLS. These

prediction performance results support empirically our conviction that the nonlinear functional forms,

such as Equations (13) and (14), are more appropriate for the Japanese long-run money demand.

4 Conclusions

In this paper we estimated long-run money demand for Japan with two functional forms that allow

for the liquidity trap and compared the empirical results for these functional forms with those for the

standard log-level functional form. Estimating different functional forms leads to nonlinear cointe-

gration. However, we found that the empirical results are robust to estimation methods that assume

linear and nonlinear cointegration. We then compared the out-of-sample prediction performance of

the three functional forms. Our empirical results indicated that the functional forms which allow for

the liquidity trap are better than the log-level functional form.
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Table 1: Estimation Results for β1
1 (Seasonal Dummy)

yt = GDP

it

SOLS DOLS2 FMOLS NCLS3]

-0.0425 -0.0477 -0.0448 -0.0440

Asymptotic4 (-0.0569, -0.0280) (-0.0637, -0.0317) (-0.0589, -0.0307) (-0.0581, -0.0299)

Bootstrap5 (-0.0657, -0.0263) (-0.0709, -0.0247) (-0.0680, -0.0264) (-0.0669, -0.0247)

ln(it)

-0.1646 -0.1715 -0.1700 -0.1653

Asymptotic (-0.2177, -0.1114) (-0.2326, -0.1104) (-0.2219, -0.1180) (-0.2171, -0.1134)

Bootstrap (-0.2431, -0.0977) (-0.2577, -0.0857) (-0.2516, -0.0982) (-0.2450, -0.0888)

ln( it

1+it
)

0.1706 0.1774 0.1760 0.1712

Asymptotic (0.1155, 0.2257) (0.1139, 0.2408) (0.1222, 0.2299) (0.1174, 0.2250)

Bootstrap (0.1008, 0.2515) (0.0881, 0.2669) (0.1016, 0.2607) (0.0865, 0.2475)

yt = Consumption

it

-0.0452 -0.0518 -0.0480 -0.0471

Asymptotic (-0.0645, -0.0258) (-0.0725, -0.0311) (-0.0668, -0.0292) (-0.0659, -0.0282)

Bootstrap (-0.0766, -0.0232) (-0.0811, -0.0219) (-0.0792, -0.0238) (-0.0782, -0.0218)

ln(it)

-0.1764 -0.1864 -0.1831 -0.1774

Asymptotic (-0.2477, -0.1050) (-0.2646, -0.1082) (-0.2524, -0.1138) (-0.2468, -0.1080)

Bootstrap (-0.2821, -0.0866) (-0.2964, -0.0772) (-0.2930, -0.0887) (-0.2896, -0.0776)

ln( it

1+it
)

0.1828 0.1929 0.1897 0.1838

Asymptotic (0.1089, 0.2568) (0.1117, 0.2741) (0.1179, 0.2616) (0.1119, 0.2557)

Bootstrap (0.0896, 0.2920) (0.0793, 0.3072) (0.0915, 0.3034) (0.0712, 0.2856)

1) Figures in parenthesis are the 95% confidence interval.

2) The number of leads and lags is 3.

3) The bandwidth parameter,
[

n
kn

]
, is 5. Results are robust between 4 and 8.

4) An HAC estimator with Bartlett kernel is used with the bandwidth parameter of 4.

5) The overlapping block bootstrap method is used with the block size of 5.

Bootstrap sample size is 10,000.
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Table 2: Prediction Performance Results1

SOLS DOLS FMOLS NCLS

GDP

stepwise one-step ahead forecast2

it 0.0863 0.0704 0.0696 0.0755

ln(it) 0.0359 0.1341 0.0393 0.0381

ln( it

1+it
) 0.0354 0.1390 0.0394 0.0379

two separated sample2

it 0.1326 0.0708 0.0930 0.1059

ln(it) 0.0343 0.4753 0.0466 0.0373

ln( it

1+it
) 0.0339 0.5082 0.0489 0.0381

Consumption

stepwise one-step ahead forecast2

rt 0.0923 0.0663 0.0688 0.0761

ln(rt) 0.0303 0.1694 0.0357 0.0342

ln(1 + 1

rt
) 0.0297 0.1770 0.0361 0.0341

two separated sample2

rt 0.1584 0.0801 0.1009 0.1172

ln(rt) 0.0301 0.6321 0.0467 0.0349

ln(1 + 1

rt
) 0.0292 0.6763 0.0499 0.0360

1) For estimation the same specifications as Table 1 are used.

2) Prediction period is from 1997:1 to 2002:4.
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