MONEY DEMAND FUNCTION ESTIMATION BY NONLINEAR COINTEGRATION

YOUNGSOO BAE† AND ROBERT M. DE JONG‡
Department of Economics, Ohio State University, USA

July 2005

SUMMARY

Conventionally, the money demand function is estimated using a regression of the logarithm of money demand on either the interest rate or the logarithm of the interest rate. This equation is presumed to be a cointegrating regression. In this paper, we aim to combine the logarithmic specification, which models the liquidity trap better than a linear model, with the assumption that the interest rate itself is an integrated process. The proposed technique is robust to serial correlation in the errors. For the US, our new technique results in larger coefficient estimates than previous research suggested, and produces superior out-of-sample prediction.

JEL Classification: E41; C22
Keywords: Liquidity Trap, Money Demand, Nonlinear Cointegration

† Correspondence to: 410 Arps Hall, 1945 North High Street, Columbus OH, 43210, USA. Email: bae.35@osu.edu.
Telephone: 614-292-5765. Fax: 614-292-3906. I would like to thank Masao Ogaki for invaluable advices and encouragement.
‡ Email: dejong@ecolan.sbs.ohio-state.edu
1 INTRODUCTION

1.1 Money Demand and Functional Form

The money demand function has long been a fundamental building block in macroeconomic modelling and an important framework for monetary policy. The literature on money demand function estimation is extensive. Most of this literature is concerned with the existence of a stable money demand function. Notable references are Laidler (1985), Lucas (1988), Hoffman and Rasche (1991), Miller (1991), Baba et al. (1992), McNown and Wallace (1992), Stock and Watson (1993), Mehra (1993), Miyao (1996), Ball (2001), and Anderson and Rasche (2001). For a recent literature survey, see Sriram (2001).

However, much of the recent literature on monetary economics seems to de-emphasize the importance of money demand; see Duca and VanHoose (2004). Despite the consensus that money demand function has little role under an interest-rate-based (Taylor-rule type) monetary policy, it is still believed that money demand is important for both macroeconomic model and monetary policy. This is especially relevant for countries like Germany, where monetary authorities continue to emphasize the role of the money demand function on their monetary policy operation. For example, see Beyer (1998), Lutkepohl et al. (1999), and Coenen and Vega (2001). For the US, Duca and VanHoose (2003) carefully argue the continued relevance of the money demand function. Their main argument is that monetary policy does not work only through the interest rate channel, and that money demand can provide useful information about portfolio allocations.

It should be also noted that in the simultaneous equations framework for the money market, it has been generally accepted by many researchers that the money supply is largely controlled by the monetary policy authority. This implies that the money supply curve is vertical in the plane of the nominal interest rate and the quantity of money. For example, see Papademos and Modigliani (1990, p.402). Therefore, the money demand function is well identified, and if the money supply is an integrated process, the money demand function can be estimated by the cointegration method.

In the literature on the estimation of the long-run money demand, the functional form

\[m_t = \beta_0 + \beta_1 r_t + u_t \]

has been widely used, where \(m_t \) denotes the logarithm of real money demand and \(r_t \) is the nominal interest rate. For example, see Lucas (1988), Stock and Watson (1993) and Ball (2001). In addition to the functional form of Equation (1), the functional form

\[m_t = \beta_0 + \beta_1 \ln(r_t) + u_t, \]

(2)
has been considered, which is based on the inventory-theoretic approach pioneered by Allais (1947, Vol. 1, pp.235-241), Baumol (1952) and Tobin (1956). In this paper, we consider only the logarithmic functional form. The motivation for this functional form is as follows. Consider an individual who receives an income Y in the form of bonds. There is a fixed transactions cost b for converting interest-bearing bonds into cash. Let K denote the real value of bonds converted into cash each time there is a conversion. The total transaction costs γ incurred by the individual are given by

$$\gamma = b \left(\frac{Y}{K} \right) + r \left(\frac{K}{2} \right),$$

where the first term represents conversion costs and the second term represents the interest cost on average money holdings ($K/2$) over the period. Minimizing the transaction costs with respect to K yields the following square-root law for optimal real money balances

$$\frac{M^d}{P} = \frac{K}{2} = \frac{1}{2} \left(\frac{2bY}{r} \right)^{1/2}.$$

Expressing the above equation in logarithmic form, we obtain the following functional form of the money demand,

$$\ln \left(\frac{M^d}{P} \right) = \beta_0 + \beta_1 \ln(Y) + \beta_2 \ln(r), \quad (3)$$

where the parameters β_1 and β_2 represent the constant income- and interest-elasticities of money demand that are implied to be $1/2$ by the model. Miller and Orr (1966) extend the Allais-Baumol-Tobin analysis to the case in which cash flows are stochastic, while maintaining the assumption of a fixed transaction cost in converting bonds to money. In more recent work Bar-Ilan (1990) extends the inventory-theoretic model further to allow for the possibility of overdrafting by relaxing the assumption that the “trigger” be restricted to zero. Money balances may fall below zero and, when they do, the individual has to pay a penalty at a rate $p > 0$ for using the overdrafting facility. It is shown that for any finite nominal interest r and penalty rate p the optimal trigger point is negative. Only in the special case when the penalty rate of using the credit is infinitely high relative to the interest rate does the model yield the Allais-Baumol-Tobin result. Since credit and money are very close substitutes, even small increases in the cost of holding money relative to credit (a higher r/p ratio) results in substitution of credit for money, thereby yielding a higher interest elasticity of money demand than the earlier models. Therefore, these extensions by Miller and Orr (1966) and Bar-Ilan (1990) also give rise to the logarithmic specification of Equation (3), but with a higher value for β_2.

3
1.2 Functional Forms of Money Demand, Liquidity Trap and Monetary Policy

A second motivation for considering a logarithmic specification is the ability to capture the liquidity trap. The choice of functional form has important implications for the presence of the liquidity trap. Goldfeld and Sichel (1990, p.346) mentioned that “The issue of functional form for the interest rate has, of course, a much longer history in the money demand literature, stemming from debates about the existence of a liquidity trap.” The liquidity trap is the phenomenon where the public’s money demand becomes indefinite at a low interest rate; that is, the public is willing to hold any amount of money at a low interest rate, because it is indifferent between money and other financial assets.\(^1\) In the functional form of Equation (1), there is no liquidity trap, while the liquidity trap exists in the functional form of Equation (2). This is because in the latter specification, the money demand increases into infinity as the interest rate approaches to zero. Laidler (1985, p.53) argued that “[Keynes’s analysis] ... suggest that it [money demand] cannot be treated as a simple, stable, approximately linear, negative relationship with respect to the rate of interest.”

The presence of the liquidity trap has important implications for monetary policy. As Krugman (1998) pointed out,\(^2\) the liquidity trap makes the traditional monetary policy impotent when interest rate is close to zero. Furthermore, the possibility of the liquidity trap makes a central bank’s optimal policy different even at the normal range of the interest rate. Nishiyama (2003) showed that in the presence of the liquidity trap the optimal monetary policy is to set a small but positive inflation rate as its target, to avoid the possibility of falling into the liquidity trap. This is an important issue considering US’s current interest rate level that is historically low in 45 years and Japan’s decade of economic slump despite of almost zero interest rate.\(^3\)

In addition to the ability to capture the liquidity trap, the specification of Equation (2) has two more advantages over the specification of Equation (1). First, macroeconomic data show a clear nonlinear relationship between money demand and the interest rate, as is illustrated in Figure 1. On

1 Laidler (1985, p.53) mentioned that “This is the doctrine of the liquidity trap, which argues that the interest elasticity of the demand for money can, at low levels of the rate of interest, take the value infinity.”

2 Krugman (1998) mentioned that “A liquidity trap may be defined as a situation in which conventional monetary policies have become impotent, because nominal interest rates are at or near zero.”

3 This relationship among functional form of money demand, the existence of the liquidity trap and the effectiveness of monetary policy has long been well recognized, for example Goldfeld and Sichel (1990). However, this question has been largely ignored in the empirical literature on money demand function estimation.
the other hand, a graph of the relationship between money demand and the logarithm of the interest rate appears to be linear. Second, as argued by Anderson and Rasche (2001), the elasticity of money demand with respect to the interest rate should not be an increasing function of the interest rate, but it should be a decreasing or at least a non-increasing function. This is because as the public reduces its money holdings, each successive reduction should not be less difficult. While the interest elasticity of money demand is an increasing function of the interest rate in the specification of Equation (1), it is constant in the specification of Equation (2). Considering all these aspects, we may conclude that the specification of Equation (2) is more appropriate than the specification of Equation (1).

1.3 Linear Cointegration Methods

It is believed by many researchers that the nominal interest rate is an integrated process. This assumption was made in e.g. Stock and Watson (1993), Ball (2001), Anderson and Rasche (2001), and Hu and Phillips (2004). See Hu and Phillips (2004) for an argument for nonstationarity in the nominal interest rate. This assumption might have some advantages over the alternative assumption that the logarithm of the nominal interest rate is an integrated process. In the latter assumption, the nominal interest rate is an exponential function of an integrated process, which implies that its percentage change has a stationary distribution. This might be an appropriate assumption for some macroeconomic variables, such as GDP and CPI. For the nominal interest rate, however, if we consider the fact that the Federal Reserve Board (FRB) usually adjusts its target interest rate by multiples of 25 basis points, not by certain percentage of the current interest rate level, it might be more appropriate to assume that its difference has a stationary distribution, which in turn implies that the nominal interest rate itself is an integrated process.

Under the assumption that the nominal interest rate is an integrated process, cointegration methods have been used for the estimation and the statistical inference on the money demand function. However, to use conventional linear cointegration methods, such as Phillips and Hansen (1990)'s “Fully Modified OLS” (FMOLS) and Stock and Watson (1993)'s “Dynamic OLS” (DOLS), we need to make different assumptions for different functional forms; that is, for Equation (1), r_t must be assumed to be an integrated process, and for Equation (2), $\ln(r_t)$ must be assumed to be an integrated process. However, if r_t is an integrated process, then the logarithm of r_t is not
an integrated process in any meaningful sense, and vice versa.\footnote{Anderson and Rasche (2001) estimated three different functional forms, such as linear, logarithm and reciprocal function of the nominal interest rate, by the conventional linear cointegration methods, and concluded that functional forms of logarithm and reciprocal are more stable than linear one. However, since they used the conventional linear cointegration for all three different functional forms, their conclusion could not be free from the criticism of misspecification.} Because of this problem, linear cointegration methods do not provide a consistent framework to estimate both Equation (1) and (2) under the assumption that the interest rate is an integrated process. The approach in this paper seeks to estimate the functional form of Equation (2) under the assumption that the interest rate is an integrated process; that is, we aim to reconcile the assumption that interest rate is an integrated process with the logarithmic functional form.

Nonlinearity in the short-run dynamics of the money demand function estimation has been investigated in the framework of “Error Correction Model” (ECM) and “Smooth Transition Regression” (STR) models; for example, see Terasvirta and Eliasson (2001) and Chen and Wu (2005). However, to the best of our knowledge, our paper is the first attempt to investigate nonlinearity in the long-run cointegration relationship of the money demand function. Recently there have been new developments of nonlinear cointegration methods; notably, Park and Phillips (1999, 2001), Chang et al. (2001), and de Jong (2002). However, currently available nonlinear cointegration methods are not suitable for the analysis of the model of Equation (2). The techniques of Park and Phillips (1999, 2001) and Chang et al. (2001) can be used in principle, but only if we assume that the error term u_t is a martingale difference sequence. Because of the presence of serial correlation and possible endogeneity, this assumption is not acceptable for estimation of the long-run money demand function estimation. De Jong (2002) relaxes the martingale difference sequence assumption, however, his technique cannot be used for the specification of Equation (2) because of the unboundedness of the logarithm function near zero.

To this end, we will develop a new nonlinear “fully modified” type cointegration method that can be used in the functional form of Equation (2) under the assumption that r_t is an integrated process. Of course, the assumption of a logarithmic specification in combination with the presence of a unit root in r_t will give rise to the inner inconsistency that integrated processes can take on negative values. This is not a problem only for Equation (2). In Equation (1), the interest rate cannot be an integrated process, because it is always positive. This is true for some other macroeconomic variables as well, such as the unemployment rate. Therefore, in the sequel of this paper it is presumed that Equation (2) is approximated by a logarithm function of the absolute value of the interest rate.
Since asymptotic theory provides us with nothing more than approximations to true coefficient distributions, this paper should be viewed as providing a different means of conducting inference in the money demand function of Equation (2), using a different approximation of the limit distributions of coefficients.

The paper is organized as follows. In Section 2, a new nonlinear cointegration method is proposed and its asymptotic properties are established. In Section 3, the US long-run money demand function is estimated using both the newly proposed technique and more conventional techniques, and the estimation results are presented. The conclusions can be found in Section 4.

2 NONLINEAR COINTEGRATING REGRESSION

2.1 Model and Assumptions

In this paper, the nonlinear cointegrating regression

$$y_t = \beta_0 + \beta_1 \ln |x_t| + u_t$$

is considered, where x_t is an integrated process and u_t is a stationary process. Note that Equation (4) is different from Equation (2); i.e. the absolute value of an integrated process $|x_t|$ goes into a logarithm function in Equation (4), not x_t. Its estimation and statistical inference are not simple tasks. To illustrate analytical difficulties that Equation (4) poses, we investigate the properties of the OLS estimator. The OLS estimator $\hat{\beta}_1$ satisfies

$$\sqrt{n}(\hat{\beta}_1 - \beta_1) = \frac{1}{\sqrt{n}} \sum_{t=1}^{n} (\ln |x_t| - \ln |\bar{x}_n|)u_t = \frac{1}{\sqrt{n}} \sum_{t=1}^{n} (\ln \frac{x_t}{\sqrt{n}} - \ln \frac{\bar{x}_n}{\sqrt{n}})u_t,$$

where \bar{x}_n indicates the sample average of X_t. Note that if u_t is a martingale difference sequence as in Park and Phillips (2001), it can be shown that $\sqrt{n}(\hat{\beta}_1 - \beta_1)$ is $O_p(1)$. However, if u_t has serial correlation, and u_t and Δx_t are correlated with each other, de Jong (2002) has shown that for continuously differentiable function $T(\cdot)$,

$$\frac{1}{\sqrt{n}} \sum_{t=1}^{n} T(\frac{x_t}{\sqrt{n}})u_t \xrightarrow{d} \int_{0}^{1} T(W(r))dU(r) + \Lambda \int_{0}^{1} T'(W(r))dr$$

where $W(r)$ and $U(r)$ are the limiting Brownian processes associated with $(\Delta x_t, u_t)$, and Λ is the correlation parameter. Since $\int_{0}^{1} \frac{1}{|W(r)|}dr$ is undefined, it can be conjectured that if $\Lambda \neq 0$, $\frac{1}{\sqrt{n}} \sum_{t=1}^{n} \ln |\frac{x_t}{\sqrt{n}}| u_t$ has no well-defined limit, and therefore $\sqrt{n}(\hat{\beta}_1 - \beta_1)$ does not converge in distribution.

Throughout the paper, the following assumptions are maintained.
Assumption 1 Let $\Delta x_t = w_t$ with $x_0 = O_p(1)$. u_t and w_t are linear processes

$$u_t = \sum_{i=0}^{\infty} \phi_{1,i} \varepsilon_{1,t-i}$$

$$w_t = \sum_{i=0}^{\infty} \phi_{2,i} \varepsilon_{2,t-i},$$

where $\varepsilon_t = (\varepsilon_{1,t}, \varepsilon_{2,t})$ is a sequence of independent and identically distributed (i.i.d.) random variables with mean zero. The long-run covariance matrix of $\eta_t = (u_t, w_t)$, Ω, is given by

$$\Omega = C_0 + \sum_{j=1}^{\infty} (C_j + C_j') = \begin{bmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{bmatrix}$$

where $C_j = E(\eta_t \eta_{t-j}')$. Ω_{22} is nonsingular.

Note that u_t and w_t are allowed to be weakly dependent and correlated with each other.

Assumption 2 $\sum_{i=0}^{\infty} i |\phi_{j,i}| < \infty$ and $E|\varepsilon_{j,t}|^p < \infty$ for some $p > 2$ for $j = 1, 2$.

Assumption 3 The distribution of $(\varepsilon_{1,t}, \varepsilon_{2,t})$ is absolutely continuous with respect to the Lebesgue measure and has characteristic function $\psi(s)$ for which $\lim_{|s| \to \infty} |s|^q \psi(|s|) = 0$ for some $q > 1$.

Under Assumption 1, 2 and 3, $\frac{1}{\sqrt{n}} \sum_{t=1}^{[nr]} w_t$ has a density $f_t(\cdot)$ that is uniformly bounded over t.

Also, define

$$U_n(r) = \frac{1}{\sqrt{n}} \sum_{t=1}^{[nr]} u_t$$

$$W_n(r) = \frac{1}{\sqrt{n}} \sum_{t=1}^{[nr]} w_t,$$

where $[s]$ denotes the largest integer not exceeding s. Then we can assume without loss of generality that by the Skorokhod representation theorem,

$$\sup_{r \in [0, 1]} |W_n(r) - W(r)| = o(1)$$

and

$$\sup_{r \in [0, 1]} |U_n(r) - U(r)| = o(\delta_n),$$

where δ_n is a deterministic sequence that is $o(n^{-\frac{p+2}{2p}})$; see Park and Phillips (1999, p.271).
2.2 Estimation

In this section, a “Nonlinear Cointegration Least Squares” (NCLS) estimator \(\tilde{\beta}_1 \) is defined and its asymptotic properties are established. This estimator solves the problems associated with the unboundedness of the logarithm function near zero that make the OLS estimator intractable for analysis. Let \(k_n \) be an integer-valued positive sequence such that \(k_n \to \infty \) and \(k_n n^{-\frac{p}{2}} \to 0 \) for some \(\eta > 0 \), and \(n_j = \left[\frac{n_j}{k_n} \right] \) for \(j = 0, 1, 2, \ldots, k_n \). Let \(z_t = \ln |x_{n_j-1+1}| \) for \(n_j-1+1 \leq t \leq n_j \) for \(j = 1, 2, \ldots, k_n \). Then the NCLS estimator \(\tilde{\beta}_1 \) is

\[
\tilde{\beta}_1 = \frac{\sum_{t=1}^{n} z_t (y_t - \bar{y})}{\sum_{t=1}^{n} z_t (\ln |x_t| - \ln |\bar{x}|)} = \frac{\sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \ln |x_{n_{j-1}+1}| (y_t - \bar{y})}{\sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \ln |x_{n_{j-1}+1}| (\ln |x_t| - \ln |\bar{x}|)}.
\]

This is an IV estimator that uses \(z_t \) as the instrumental variable for \(\ln |x_t| \). Note that \(k_n \to \infty \) at a slower rate than \(n \), and \(k_n = o(n^{1/3}) \) when \(p = \infty \).

Two technical results that are needed in the sequel are stated below.

Theorem 1 Under Assumption 1, 2 and 3,

\[
\frac{1}{\sqrt{n}} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \ln \left| \frac{x_{n_{j-1}+1}}{\sqrt{n}} \right| u_t \xrightarrow{d} \int_{0}^{1} \ln |W(r)| dU(r).
\]

Theorem 2 Under Assumption 1, 2 and 3,

\[
\frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \ln \left| \frac{x_{n_{j-1}+1}}{\sqrt{n}} \right| |\ln \left| \frac{x_t}{\sqrt{n}} \right| | u_t \xrightarrow{d} \int_{0}^{1} |\ln |W(r)||^2 d\sigma.
\]

Based on Theorem 1 and 2, the asymptotic distribution of \(\tilde{\beta}_1 \) is obtained in the following theorem.

Theorem 3 Under Assumption 1, 2 and 3,

\[
\sqrt{n}(\tilde{\beta}_1 - \beta_1) \xrightarrow{d} \int_{0}^{1} \ln |W(r)| dU(r) - U(1) \int_{0}^{1} \ln |W(r)| d\sigma - \left[\int_{0}^{1} \ln |W(r)| d\sigma \right]^2.
\]

The result of Theorem 3 is reminiscent of the limit theory for the least squares estimator in a linear cointegration regression. In both cases, the result holds without exogeneity assumption of any kind, and the limit distribution is not directly suitable for inference in some empirical settings. If \(W(\cdot) \) and
are orthogonal, then the usual “t- and F-statistics” are valid because they achieve the correct significance level conditionally on \(W(\cdot)\). However, if they are not orthogonal, which is likely in the long-run money demand function case, this result cannot be used for the statistical inference, since the above limit distribution depends on the correlation between \(U(\cdot)\) and \(W(\cdot)\).

2.3 Fully Modified Type Estimation of the NCLS Estimator

In this section, a “fully modified” type estimation procedure for the NCLS estimator is proposed. A modification is needed to establish the asymptotic conditional normality. The regression Equation (4) can be written as

\[
y_t^\dagger = \beta_0 + \beta_1 \ln |x_t| + u_t^\dagger,
\]

where \(y_t^\dagger = y_t - \Omega_{21}^{-1} \Omega_{22}^{-1} \Delta x_t\) and \(u_t^\dagger = u_t - \Omega_{21}^{-1} \Omega_{22}^{-1} \Delta x_t\). Note that now the limiting Brownian process associated with \(u_t^\dagger\), \(U^\dagger(\cdot)\), and \(W(\cdot)\) are orthogonal.\(^5\)

The proposed estimation procedure is now as follows.

1. Calculate the residual, \(\hat{u}_t\), from a regression of \(y_t\) on an intercept and \(\ln |x_t|\) by the NCLS estimation method.

2. Get a HAC estimate \(\hat{\Omega}\) by using \((\hat{u}_t, \Delta x_t)\).

3. Calculate \(\hat{y}_t^\dagger\) in a way analogous to FMOLS,

\[
\hat{y}_t^\dagger = y_t - \hat{\Omega}_{21} \hat{\Omega}_{22}^{-1} \Delta x_t.
\]

4. The “fully modified” NCLS estimator \(\hat{\beta}_1\) is defined as the NCLS estimator that is calculated using the modified dependent variable \(\hat{y}_t^\dagger\), instead of \(y_t\), i.e.

\[
\hat{\beta}_1 = \frac{\sum_{t=1}^n z_t(y_t^\dagger - \bar{y}_t)}{\sum_{t=1}^n z_t(\ln |x_t| - \ln |\bar{x}_t|)} = \frac{\sum_{j=1}^{k_n} \sum_{t=n_j-1+1}^{n_j} \ln |x_{n_j-1}+1| (\hat{y}_t^\dagger - \bar{y}_t)}{\sum_{j=1}^{k_n} \sum_{t=n_j-1+1}^{n_j} \ln |x_{n_j-1}+1| (\ln |x_t| - \ln |\bar{x}_t|)}.
\]

\(^5\) This follows because

\[
\lim_{n \to \infty} E \left(\frac{1}{n} \sum_{t=1}^{[rn]} u_t \right) \left(\frac{1}{n} \sum_{t=1}^{[rn]} \Delta x_t \right)
= \lim_{n \to \infty} E \left(\frac{1}{n} \sum_{t=1}^{[rn]} u_t \right) \left(\frac{1}{n} \sum_{t=1}^{[rn]} \Delta x_t \right) - \Omega_{21}^{-1} \Omega_{22} \left(\frac{1}{n} \sum_{t=1}^{[rn]} \Delta x_t \right)^2
= \Omega_{21} - \Omega_{21} \Omega_{22}^{-1} \Omega_{22} = 0.
\]
To establish the asymptotic distribution of $\hat{\beta}_1$, the following additional assumption is needed.

Assumption 4 Let $k(\cdot)$ and $\{b_n : n \geq 1\}$ be a kernel function and a sequence of bandwidth parameters that are used for the HAC estimator $\hat{\Omega}$ in step 2.

(i) $k(0) = 1$, $k(\cdot)$ is continuous at zero, and $\sup_{x \geq 0} |k(x)| < \infty$.

(ii) $\int_0^\infty k(x)dx < \infty$, where $\bar{k}(x) = \sup_{y \geq x} |k(y)|$.

(iii) $b_n \subseteq (0, \infty)$ and $\lim_{n \to \infty} \left(\frac{1}{b_n} + \frac{b_n}{\sqrt{n}} \right) = 0$.

Assumption 4 is Assumptions A3 and A4 in Jansson (2002, p.1450). Note that Assumption 4 (i) and (ii) hold for the 15 kernels, including the Bartlett kernel, studied by Ng and Perron (1996), and Assumption 4 (iii) holds whenever the bandwidth expansion rate coincides with the optimal rate in Andrews (1991); see Jansson (2002, p.1450-1451).

The following results establishes the consistency of the HAC estimator $\hat{\Omega}$.

Theorem 4 Let $\hat{\Omega}$ be the HAC estimator in Step 2. Under Assumption 1, 2, 3 and 4, $\hat{\Omega} \xrightarrow{p} \Omega$.

The asymptotic distribution of the “fully modified” NCLS estimator $\hat{\beta}_1$ is obtained in the following theorem.

Theorem 5 Under Assumption 1, 2, 3 and 4,

$$\sqrt{n}(\hat{\beta}_1 - \beta_1) \xrightarrow{d} \int_0^1 \ln |W(r)|dU^\top(r) - U^\top(1) \int_0^1 \ln |W(r)|dr$$

$$\int_0^1 \ln |W(r)||^2 dr - \left[\int_0^1 \ln |W(r)|dr \right]^2.$$

Since $W(r)$ and $U^\top(r)$ are orthogonal in Theorem 5, it follows that conditionally on $W(\cdot)$,

$$\sqrt{n}(\hat{\beta}_1 - \beta_1) \xrightarrow{d} N \left(0, \frac{\Omega_{11}^\top}{\int_0^1 \ln |W(r)||^2 dr - \left[\int_0^1 \ln |W(r)|dr \right]^2} \right),$$

where Ω_{11}^\top is the long-run variance of u_t^\top. This implies that the usual “t- and F-statistics” are valid. For estimation of Ω_{11}^\top, a consistent estimator $\hat{\Omega}_{11}^\top$ is provided by

$$\hat{\Omega}_{11}^\top = \hat{\Omega}_{11} - \hat{\Omega}_{21}^\top \hat{\Omega}_{22}^{-1} \hat{\Omega}_{21}.$$

Note that since $\hat{\Omega} \xrightarrow{p} \Omega$ by Theorem 4, $\hat{\Omega}_{11}^\top$ is a consistent estimator for Ω_{11}^\top.

2.4 Sensitivity to the Choice of k_n

In order to assess the sensitivity of our estimator $\hat{\beta}_1$ to different values of k_n, we carried out an informal and limited simulation study. The simulation procedure was as follows:

1. Generate $(\Delta x_t, u_t)$ for $t = 1, \ldots, n = 100$ using the following VAR(1) model with initial value $(\Delta x_0, u_0) = (0, 0)$:

$$
\begin{bmatrix}
\Delta x_t \\
u_t
\end{bmatrix} =
\begin{bmatrix}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{bmatrix}
\begin{bmatrix}
\Delta x_{t-1} \\
u_{t-1}
\end{bmatrix} +
\begin{bmatrix}
\varepsilon_{1,t} \\
\varepsilon_{2,t}
\end{bmatrix},
$$

where $(\varepsilon_{1,t}, \varepsilon_{2,t})$ is bivariate normal with mean zero and variances σ_1^2 and σ_2^2, and $\varepsilon_{1,t}$ and $\varepsilon_{2,t}$ are independent.

2. Construct data y_t using the nonlinear cointegrating regression

$$
y_t = \beta_0 + \beta_1 \ln |x_t| + u_t.
$$

3. Estimate $\hat{\beta}_1$ using our “fully modified” NCLS estimation method with different values for k_n.

4. Repeat Step 1-3 100,000 times and compute the average of $\hat{\beta}_1$ for each value of k_n.

For β_0, β_1, σ_1^2 and σ_2^2, we use the values that are estimated from actual US data; for the details of the simulation parameter specifications, see footnote (1) below Table 5. For the choice of the ϕ_{ij}, however, we consider five different combinations, including one that is estimated from actual US data as a benchmark case. Simulation results in Table 5 indicate that our NCLS estimator is generally robust to the different values of k_n, although the mean squared error increases as n/k_n increases.

3 US MONEY DEMAND

In this section, the US long-run money demand functions of Equation (1) and (2) are estimated by both linear and nonlinear cointegration methods. Specifically, we use “Static OLS” (SOLS), DOLS, FMOLS, and NCLS estimation techniques.

3.1 Unit Root Test Results

We first conduct unit root tests for the nominal interest rate and the logarithm of the nominal interest rate by both the Augmented Dickey-Fuller (ADF) test and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al. 1992). Test results are presented in Table 1. The ADF test results show that the null hypotheses that r_t and $\ln(r_t)$ are integrated processes without drift cannot
be rejected, and the KPSS test results show that the null hypotheses that r_t and $\ln(r_t)$ are stationary processes are rejected. Therefore, both tests confirm the hypotheses that r_t and $\ln(r_t)$ are integrated processes.

3.2 Estimation Results

The same data set as Ball (2001), Stock and Watson (1993) and Lucas (1978) is used, however it was extended up to 1997. M_1, Net National Products (NNP), NNP deflator, and 6-months commercial paper rate are used as money, output, price, and nominal interest rate, respectively.

Coefficient estimates and their HAC asymptotic standard deviations are presented in Table 2. When the estimation results are compared between linear cointegration methods and the NCLS method in the functional form of Equation (2), the NCLS estimates are larger in absolute value than all other linear cointegration estimates when the bandwidth parameter k_n is small. Note that the theory for the NCLS estimator is valid for $k_n = o(n^{1/4})$ at best, which suggests that a small value for k_n may be appropriate. Also, note that for $k_n = 7$, all NCLS point estimates are outside all the 95% confidence intervals suggested by the SOLS, DOLS and FMOLS estimates.

To further address the question which functional form is most appropriate and which estimation technique is to be preferred, we investigate out-of-sample prediction performance in terms of sum of squared forecast errors. Results are presented in Table 3 and 4. Between the functional forms of Equation (1) and (2), Equation (2) outperforms Equation (1) in all combinations of different estimation methods and prediction methods. Within the functional form of Equation (2), the NCLS estimator produces superior prediction performance compared to other conventional linear cointegration estimators. The superior out-of-sample prediction performance of the NCLS estimator in combination with the logarithmic specification suggests that the NCLS technique produces the most desirable estimation results, and this reinforces our belief that the conventional techniques may underestimate the impact of the nominal interest rate on money demand.

6 The reason data extension is stopped in 1997 is that 6-months commercial paper rate was discontinued at that point.

7 After 1995, the official M1 statistics excludes the Sweep Account. As shown by Dutkowsky and Cynamon (2003), this might have an impact on cointegration relationship. Therefore, we added the Sweep Account to M1 from 1994.
4 CONCLUSION

This paper investigates two different functional forms for the US long-run money demand function by linear and nonlinear cointegration methods. Since different functional forms have different implications for the presence of the liquidity trap and effectiveness of the traditional monetary policy, the choice of functional form is an important issue. Therefore, its estimation should be conducted in a consistent framework so that estimation results can be comparable. Since a logarithm function involves a nonlinear relationship between money demand and the interest rate, nonlinear cointegration methods are more appropriate if the interest rate is presumed to be an integrated process. This paper proposes a new nonlinear cointegration method that is suitable for a more general time series situation, such as the long-run money demand function estimation, where serial correlation in the errors is present. One interesting finding from a theoretical point of view is that our nonlinear cointegration method establishes \sqrt{n}-consistency of the slope parameter, rather than n-consistency.

Our empirical findings are different from the previous literature in two respects. First, our NCLS estimates of the nominal interest rate coefficient are larger in absolute value than estimates from the conventional linear cointegration methods. This implies that the US long-run money demand function might be more elastic in terms of the nominal interest rate than previously assumed. Second, our NCLS estimation method avoids a possible misspecification problem that may have existed in the previous literature where both linear and logarithm specifications were estimated by the conventional linear cointegration method. Unlike linear cointegration methods, our estimation method has no theoretical problem. With our new estimation method, we find that the out-of-sample prediction performance for our NCLS technique is superior to that of conventional linear estimation techniques.
5 Appendix

5.1 Estimation Results

Figure 1: Money Demand - Linear vs. Logarithm
Table 1: Unit Root Test for Interest Rate

<table>
<thead>
<tr>
<th></th>
<th>r_t</th>
<th>Δr_t</th>
<th>$\ln(r_t)$</th>
<th>$\Delta \ln(r_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF test</td>
<td>-0.07</td>
<td>-1.39**</td>
<td>-0.05</td>
<td>-1.04**</td>
</tr>
<tr>
<td>KPSS test</td>
<td>0.64*</td>
<td>0.07</td>
<td>0.50*</td>
<td>0.13</td>
</tr>
</tbody>
</table>

1 Reject the null hypothesis at 5%(*) and 1%(**).

2 H_0: I(1) vs. H_1: I(0). The order of the first difference terms is 4.

3 H_0: I(0) vs. H_1: I(1).

Table 2: Estimation Results of Interest Rate Coefficient β_1

<table>
<thead>
<tr>
<th>sample period</th>
<th>SOLS</th>
<th>DOLS2</th>
<th>FMOLS</th>
<th>NCLS (k$_n$ = 20)3</th>
<th>NCLS (k$_n$ = 10)3</th>
<th>NCLS (k$_n$ = 7)3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900-1997</td>
<td>-0.0914</td>
<td>-0.1138</td>
<td>-0.1050</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.0100)</td>
<td>(0.0074)</td>
<td>(0.0097)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1900-1945</td>
<td>-0.0751</td>
<td>-0.0824</td>
<td>-0.0807</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.0114)</td>
<td>(0.0131)</td>
<td>(0.0114)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1946-1997</td>
<td>-0.0910</td>
<td>-0.1054</td>
<td>-0.1045</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.0149)</td>
<td>(0.0097)</td>
<td>(0.0138)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$m_t = \beta_0 + \beta_1 r_t + u_t$

<table>
<thead>
<tr>
<th>sample period</th>
<th>SOLS</th>
<th>DOLS2</th>
<th>FMOLS</th>
<th>NCLS (k$_n$ = 20)3</th>
<th>NCLS (k$_n$ = 10)3</th>
<th>NCLS (k$_n$ = 7)3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900-1997</td>
<td>-0.3326</td>
<td>-0.3793</td>
<td>-0.3557</td>
<td>-0.3548</td>
<td>-0.4165</td>
<td>-0.5198</td>
</tr>
<tr>
<td></td>
<td>(0.0400)</td>
<td>(0.0352)</td>
<td>(0.0383)</td>
<td>(0.0396)</td>
<td>(0.0431)</td>
<td>(0.0604)</td>
</tr>
<tr>
<td>1900-1945</td>
<td>-0.1869</td>
<td>-0.1898</td>
<td>-0.1895</td>
<td>-0.1902</td>
<td>-0.2276</td>
<td>-0.1603</td>
</tr>
<tr>
<td></td>
<td>(0.0247)</td>
<td>(0.0283)</td>
<td>(0.0251)</td>
<td>(0.0250)</td>
<td>(0.0286)</td>
<td>(0.0270)</td>
</tr>
<tr>
<td>1946-1997</td>
<td>-0.4863</td>
<td>-0.5140</td>
<td>-0.5089</td>
<td>-0.5196</td>
<td>-0.5908</td>
<td>-0.5977</td>
</tr>
<tr>
<td></td>
<td>(0.0474)</td>
<td>(0.0397)</td>
<td>(0.0447)</td>
<td>(0.0463)</td>
<td>(0.0468)</td>
<td>(0.0528)</td>
</tr>
</tbody>
</table>

1 Numbers in parenthesis are HAC standard error estimates with Bartlett kernel and bandwidth parameter of 4.

2 The order of the leads and lags is 4.

3 It is equivalent to set $n/k_n = 5$, 10 and 15, respectively.
Table 3: Out-of-sample Prediction Performance Results using estimates from 1900-1989

<table>
<thead>
<tr>
<th></th>
<th>SOLS</th>
<th>DOLS</th>
<th>FMOLS</th>
<th>NCLS (k_n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[t=1990 \sum [m_t - \hat{m}_t]^2]</td>
<td>1.0439</td>
<td>0.9529</td>
<td>1.0191</td>
<td>–</td>
</tr>
<tr>
<td>[m_t = \beta_0 + \beta_1 r_t + u_t]</td>
<td>[m_t = \beta_0 + \beta_1 \ln(r_t) + u_t]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[t=1990 \sum [m_t - \hat{m}_t]^2]</td>
<td>0.7411</td>
<td>0.6486</td>
<td>0.7056</td>
<td>0.5346</td>
</tr>
</tbody>
</table>

The same kernel, bandwidth and order of leads and lags as in Table 2 are used.

Table 4: Out-of-sample One-step-ahead Prediction Performance Results

<table>
<thead>
<tr>
<th></th>
<th>SOLS</th>
<th>DOLS</th>
<th>FMOLS</th>
<th>NCLS (k_n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[t=1990 \sum [m_t - \hat{m}_t]^2]</td>
<td>0.3021</td>
<td>0.2774</td>
<td>0.2790</td>
<td>–</td>
</tr>
<tr>
<td>[m_t = \beta_0 + \beta_1 r_t + u_t]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[t=1990 \sum [m_t - \hat{m}_t]^2]</td>
<td>0.5319</td>
<td>0.5345</td>
<td>0.5246</td>
<td>–</td>
</tr>
<tr>
<td>[t=1990 \sum [m_t - \hat{m}_t]^2]</td>
<td>0.7799</td>
<td>0.7963</td>
<td>0.7825</td>
<td>–</td>
</tr>
<tr>
<td>[t=1990 \sum [m_t - \hat{m}_t]^2]</td>
<td>0.9242</td>
<td>0.9202</td>
<td>0.9165</td>
<td>–</td>
</tr>
<tr>
<td>[t=1990 \sum [m_t - \hat{m}_t]^2]</td>
<td>0.9758</td>
<td>0.9423</td>
<td>0.9517</td>
<td>–</td>
</tr>
<tr>
<td>[m_t = \beta_0 + \beta_1 \ln(r_t) + u_t]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[t=1990 \sum [m_t - \hat{m}_t]^2]</td>
<td>0.1864</td>
<td>0.1567</td>
<td>0.1693</td>
<td>0.0833</td>
</tr>
<tr>
<td>[t=1990 \sum [m_t - \hat{m}_t]^2]</td>
<td>0.3377</td>
<td>0.3096</td>
<td>0.3213</td>
<td>0.2456</td>
</tr>
<tr>
<td>[t=1990 \sum [m_t - \hat{m}_t]^2]</td>
<td>0.5017</td>
<td>0.4689</td>
<td>0.4838</td>
<td>0.4027</td>
</tr>
<tr>
<td>[t=1990 \sum [m_t - \hat{m}_t]^2]</td>
<td>0.6121</td>
<td>0.5632</td>
<td>0.5871</td>
<td>0.4681</td>
</tr>
<tr>
<td>[t=1990 \sum [m_t - \hat{m}_t]^2]</td>
<td>0.6846</td>
<td>0.6165</td>
<td>0.6506</td>
<td>0.4886</td>
</tr>
</tbody>
</table>

The same kernel, bandwidth and order of leads and lags as in Table 2 are used.
Table 5: Simulation: Sensitivity of the NCLS estimator \(\hat{\beta}_1 \) to Different Values of \(k_n \)

<table>
<thead>
<tr>
<th>(n/k_n)</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_{11} = 0.17, \phi_{12} = -0.84)</td>
<td>Mean</td>
<td>-0.333</td>
<td>-0.333</td>
<td>-0.333</td>
<td>-0.332</td>
<td>-0.332</td>
<td>-0.363</td>
<td>-0.309</td>
</tr>
<tr>
<td>(\phi_{21} = 0.01, \phi_{22} = 0.86)</td>
<td>MSE</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.054)</td>
<td>(6.731)</td>
<td>(2.261)</td>
</tr>
<tr>
<td>(\phi_{11} = 0.0, \phi_{12} = 0.0)</td>
<td>Mean</td>
<td>-0.333</td>
<td>-0.332</td>
<td>-0.333</td>
<td>-0.334</td>
<td>-0.339</td>
<td>-0.333</td>
<td>-0.343</td>
</tr>
<tr>
<td>(\phi_{21} = 0.0, \phi_{22} = 0.0)</td>
<td>MSE</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.005)</td>
<td>(0.380)</td>
<td>(0.007)</td>
<td>(2.299)</td>
</tr>
<tr>
<td>(\phi_{11} = 0.2, \phi_{12} = 0.0)</td>
<td>Mean</td>
<td>-0.333</td>
<td>-0.332</td>
<td>-0.332</td>
<td>-0.332</td>
<td>-0.333</td>
<td>-0.334</td>
<td>-0.324</td>
</tr>
<tr>
<td>(\phi_{21} = 0.0, \phi_{22} = 0.2)</td>
<td>MSE</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.867)</td>
</tr>
<tr>
<td>(\phi_{11} = 0.5, \phi_{12} = 0.0)</td>
<td>Mean</td>
<td>-0.333</td>
<td>-0.332</td>
<td>-0.332</td>
<td>-0.332</td>
<td>-0.333</td>
<td>-0.330</td>
<td>-0.313</td>
</tr>
<tr>
<td>(\phi_{21} = 0.0, \phi_{22} = 0.5)</td>
<td>MSE</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.002)</td>
<td>(0.026)</td>
<td>(0.022)</td>
<td>(1.788)</td>
</tr>
<tr>
<td>(\phi_{11} = 0.5, \phi_{12} = 0.3)</td>
<td>Mean</td>
<td>-0.333</td>
<td>-0.333</td>
<td>-0.333</td>
<td>-0.333</td>
<td>-0.333</td>
<td>-0.299</td>
<td>-0.367</td>
</tr>
<tr>
<td>(\phi_{21} = 0.3, \phi_{22} = 0.5)</td>
<td>MSE</td>
<td>(0.010)</td>
<td>(0.014)</td>
<td>(0.010)</td>
<td>(0.009)</td>
<td>(0.018)</td>
<td>(8.318)</td>
<td>(8.600)</td>
</tr>
</tbody>
</table>

\(^1\) Number of observations \(n = 100 \) and number of iterations = 100,000. \(\beta_0 = -0.8879 \) and \(\beta_1 = -0.3326. \) \(\text{std}(\varepsilon_1) = 1.220 \) and \(\text{std}(\varepsilon_2) = 0.076. \)
5.2 Proofs

Proof of Theorem 1: Let \(k_n \) and \(n_j \) be same as in Section 2.2. For notational simplicity, let \(v_{t+1} = u_t \) for \(t = 0, 1, 2, \ldots, n \), and define \(V_n(r) = \frac{1}{\sqrt{n}} \sum_{t=0}^{[nr]} v_{t+1} \). Let \(r_j = \frac{n_j+1}{n} \) for \(j = 0, 1, 2, \ldots, k_n \). Consider

\[
G_n = \frac{1}{\sqrt{n}} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \ln \left| x_{n_{j-1}+1}^{n_j+1} \right| u_t = \frac{1}{\sqrt{n}} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \ln \left| x_{n_{j-1}+1}^{n_j+1} \right| v_{t+1}
\]

and

\[
= \sum_{j=1}^{k_n} \ln |W_n(r_{j-1})| (V_n(r_j) - V_n(r_{j-1})).
\]

Then \(G_n \) can be written as

\[
G_n = (G_n - P_n) + (P_n - I) + I
\]

where

\[
P_n = \sum_{j=1}^{k_n} \ln |W(r_{j-1})|(V(r_j) - V(r_{j-1})) = \sum_{j=1}^{k_n} \int_{r_{j-1}}^{r_j} \ln |W(r_{j-1})|dV(r)
\]

and

\[
I = \int_0^1 \ln |W(r)|dV(r) = \int_0^1 \ln |W(r)|dU(r).
\]

Then the theorem can be proved by showing that

\[
|G_n - P_n| \overset{p}{\rightarrow} 0
\]

and

\[
|P_n - I| \overset{p}{\rightarrow} 0.
\]

First, by summation by parts as in Davidson (1994, p.512), \(G_n - P_n \) can be written as

\[
G_n - P_n = \sum_{j=1}^{k_n} (\ln |W_n(r_{j-1})| - \ln |W(r_{j-1})|)(V_n(r_j) - V_n(r_{j-1}))
\]

\[+ \ln |W(r_{k_n})|(V_n(r_{k_n}) - V(r_{k_n})) \tag{1}\]

\[- \sum_{j=1}^{k_n} (V_n(r_j) - V(r_j))(\ln |W(r_j)| - \ln |W(r_{j-1})|). \tag{2}\]

It will be shown that all three terms converge to 0 in probability. For (1),

\[
\left[\sum_{j=1}^{k_n} (\ln |W_n(r_{j-1})| - \ln |W(r_{j-1})|)(V_n(r_j) - V_n(r_{j-1})) \right]^2 \leq \sum_{j=1}^{k_n} (\ln |W_n(r_{j-1})| - \ln |W(r_{j-1})|)^2 \sum_{j=1}^{k_n} (V_n(r_j) - V_n(r_{j-1}))^2.
\]

19
Now note that
\[E \sum_{j=1}^{k_n} [V_n(j) - V_n(j-1)]^2 = O(1) \]
because Assumption 1, 2 and 3 imply that \(E[V_n(j) - V_n(j-1)]^2 \leq C \cdot (j - r_{j-1}) \). Therefore it suffices to show that
\[\sum_{j=1}^{k_n} [\ln |W_n(j)| - \ln |W(j)|]^2 = o_p(1). \]

Let \(T_\varepsilon(x) = \ln |x|I(|x| > \varepsilon) + \ln(\varepsilon)I(|x| \leq \varepsilon) \), \(Q_\varepsilon(x) = (\ln(\varepsilon) - \ln |x|)I(|x| < \varepsilon) \), and \(\varepsilon_n = n^{-\frac{2}{2+r}} \).

First note that since \((a + b)^2 \leq 2a^2 + 2b^2\), it follows that
\[(a + b + c)^2 \leq 2a^2 + 2(b + c)^2 \leq 2a^2 + 4b^2 + 4c^2. \]

Then by letting \(a = T_{\varepsilon_n}(W_n) - T_{\varepsilon_n}(W) \), \(b = Q_{\varepsilon_n}(W_n) \), and \(c = Q_{\varepsilon_n}(W) \), we have the following,
\[\sum_{j=1}^{k_n} [\ln |W_n(j)| - \ln |W(j)|]^2 \leq 2 \sum_{j=1}^{k_n} [T_{\varepsilon_n}(W_n(j)) - T_{\varepsilon_n}(W(j))|^2 + 4 \sum_{j=1}^{k_n} Q_{\varepsilon_n}(W_n(j)) + 4 \sum_{j=1}^{k_n} Q_{\varepsilon_n}(W(j))^2. \]

Since \(T_{\varepsilon_n}(\cdot) \) is Lipschitz-continuous with Lipschitz-coefficient \(\frac{1}{\varepsilon_n} \), it follows that
\[\sum_{j=1}^{k_n} [T_{\varepsilon_n}(W_n(j)) - T_{\varepsilon_n}(W(j))|^2 \leq k_n \left(\frac{\delta_n}{\varepsilon_n} \right) ^2 = o_p(n^{\frac{1}{1+r}} \cdot n^{-\frac{2}{r}} \cdot n^{-\frac{2(3-r)}{3r}}) \]
\[= o_p(n^{\frac{1}{1+r}} - \frac{2}{r} - \frac{2}{3}) = o_p(1). \]

Recall that \(f_t(\cdot) \) denotes the density of \(\frac{X}{\sqrt{t}} \) and that under Assumption 1, 2 and 3, \(\sup_{t, y \in \mathbb{R}} f_t(y) < \infty \).

Then note that by using the substitution \(y = \frac{\sqrt{n}}{\sqrt{n_j-1+1}} W_n(j) \),
\[E \sum_{j=1}^{k_n} Q_{\varepsilon_n}(W_n(j)) = k_n \sum_{j=1}^{k_n} \int_{-\infty}^{\infty} Q_{\varepsilon_n}(\frac{\sqrt{n_j-1+1}}{\sqrt{n}} y)^2 f_{n_j-1+1}(y) dy \]
\[\leq \left[\sup_{t, y \in \mathbb{R}} f_t(y) \right] \sum_{j=1}^{k_n} \int_{-\infty}^{\infty} Q_{\varepsilon_n}(x)^2 \frac{\sqrt{n}}{\sqrt{n_j-1+1}} dx \]
\[= \left[\sup_{t, y \in \mathbb{R}} f_t(y) \right] \left[\sum_{j=1}^{k_n} \frac{\sqrt{n}}{\sqrt{n_j-1+1}} \right] \left[\int_{-\infty}^{\infty} Q_{\varepsilon_n}(x)^2 dx \right] \]
\[= O(k_n \varepsilon_n) = O(n^{\frac{1}{1+r}} \cdot n^{-\frac{2}{r}} \cdot n^{-\frac{2(3-r)}{3r}}) = o(1). \]

A similar argument holds for \(\sum_{j=1}^{k_n} Q_{\varepsilon_n}(W(j))^2 \). For (2), note that
\[\ln |W(r_k)| |V_n(r_k) - V(r_k)| = O_p(\delta_n) = o_p(1). \]
where \(\delta_n \) is a deterministic sequence that is \(o(n^{-\frac{2}{2p}}) \). A similar argument holds for (3). Therefore we have established that \(|G_n - P_n| \xrightarrow{p} 0 \). Next, \(P_n - I \) can be written as

\[
P_n - I = (P_n - P_{ne}) + (P_{ne} - I_{ne}) + (I_{ne} - I)
\]

where

\[
P_{ne} = \sum_{j=1}^{k_n} T_\varepsilon(W(r_{j-1}))(V(r_j) - V(r_{j-1})) = \sum_{j=1}^{k_n} \int_{r_{j-1}}^{r_j} T_\varepsilon(W(r_{j-1}))dV(r)
\]

and

\[
I_{ne} = \int_0^1 T_\varepsilon(W(r))dV(r).
\]

Then it will be shown that

\[
\lim_{\varepsilon \to 0} \limsup_{n \to \infty} E|P_n - P_{ne}|^2 = 0,
\]

(I)

\[
\lim_{\varepsilon \to 0} \limsup_{n \to \infty} E|P_{ne} - I_{ne}|^2 = 0,
\]

(II)

and

\[
\lim_{\varepsilon \to 0} \limsup_{n \to \infty} E|I_{ne} - I|^2 = 0.
\]

(III)

For (I),

\[
\limsup_{n \to \infty} E|P_n - P_{ne}|^2 = \limsup_{n \to \infty} E \left\| \sum_{j=1}^{k_n} \int_{r_{j-1}}^{r_j} [\ln |W(r_{j-1})| - T_\varepsilon(W(r_{j-1}))]dV(r) \right\|^2
\]

\[
= \limsup_{n \to \infty} \sum_{j=1}^{k_n} \int_{r_{j-1}}^{r_j} E[T_\varepsilon(W(r_{j-1})) - \ln |W(r_{j-1})]|^2dV(r)
\]

\[
= \limsup_{n \to \infty} \sum_{j=1}^{k_n} \int_{r_{j-1}}^{r_j} E[|\ln |\varepsilon| - \ln |W(r_{j-1})||]^2I(|W(r_{j-1})| \leq \varepsilon)dV(r)
\]

\[
= \limsup_{n \to \infty} \frac{1}{k_n} \sum_{j=1}^{k_n} E[|\ln |\varepsilon| - \ln |W(r_{j-1})||]^2I(|W(r_{j-1})| \leq \varepsilon)
\]

\[
= \limsup_{n \to \infty} \frac{1}{k_n} \sum_{j=1}^{k_n} \int_{-\infty}^{\infty} [\ln |\varepsilon| - \ln |\sqrt{r_{j-1}}z||]^2I(|\sqrt{r_{j-1}}z| \leq \varepsilon)\phi(z)dz,
\]
and by using the substitution \(y = \sqrt{r_j-1} \varepsilon \), it follows that

\[
\limsup_{n \to \infty} E|P_n - P_{\varepsilon n}|^2 \leq \limsup_{n \to \infty} \frac{1}{k_n} \sum_{j=1}^{k_n} \int_{-\varepsilon}^{\varepsilon} |\ln |y| - \ln |y||^2 \frac{1}{\sqrt{r_j-1}} \phi(y) dy
\]

\[
= \frac{1}{\sqrt{2\pi}} \left[\limsup_{n \to \infty} \frac{1}{k_n} \sum_{j=1}^{k_n} \int_{-\varepsilon}^{\varepsilon} |\ln |y| - \ln |y||^2 \frac{1}{\sqrt{r_j-1}} dy \right]
\]

Note that \(\limsup_{n \to \infty} \frac{1}{k_n} \sum_{j=1}^{k_n} \frac{1}{\sqrt{r_j-1}} \to 0 \) as \(\varepsilon \to 0 \).

For (II),

\[
\limsup_{n \to \infty} E|P_{\varepsilon n} - I_{\varepsilon n}|^2 \leq \limsup_{n \to \infty} E \left| \sum_{j=1}^{k_n} \int_{r_j-1}^{r_j} T_\varepsilon(W(r_{j-1})) dV(r) - \int_0^1 T_\varepsilon(W(r)) dV(r) \right|^2
\]

for any \(\varepsilon > 0 \), because \(T_\varepsilon(\cdot) \) is uniformly continuous. Finally, for (III),

\[
\limsup_{n \to \infty} E|I_{\varepsilon n} - I|^2 = E \left| \int_0^1 T_\varepsilon(W(r)) dV(r) - \int_0^1 \ln |W(r)| dV(r) \right|^2
\]

\[
= \int_0^1 \ln |W(r)| dV(r)
\]

This is because

\[
\int_{-\infty}^{\infty} |\ln |x||^2 \phi(x) dx = \int_{-1}^{1} |\ln |x||^2 \phi(x) dx + \int_{\mathbb{R} \setminus [-1,1]} |\ln |x||^2 \phi(x) dx
\]

\[
\leq \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} |\ln |x||^2 dx + \int_{\mathbb{R} \setminus [-1,1]} |x|^2 \phi(x) dx < \infty.
\]

Note that \(|\ln |x||^2 < |x|^2 \) if \(|x| > 1 \), and that the logarithm function and its square are locally integrable. Also note that

\[
\int_{\mathbb{R} \setminus [-1,1]} |x|^2 \phi(x) dx < \int_{-\infty}^{\infty} |x|^2 \phi(x) dx = 1,
\]
because $\phi(\cdot)$ is the pdf of the standard normal. We have established that $|P_n - I| \xrightarrow{p} 0$, which complete the proof of the theorem. ■

To prove Theorem 2, we begin with the following lemma.

Lemma 1 As $n \to \infty$,

\[
\frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \ln \left| \frac{x_{nt}}{\sqrt{n}} \right| \xrightarrow{d} \int_0^1 \ln |W(r)| dr,
\]

\[
\frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \ln \left| \frac{x_{nt}}{\sqrt{n}} \right| \xrightarrow{d} \int_0^1 \ln |W(r)| dr,
\]

\[
\frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \left[\ln \left| \frac{x_{nt}}{\sqrt{n}} \right| \right]^2 \xrightarrow{d} \int_0^1 [\ln |W(r)|]^2 dr,
\]

and

\[
\frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \left[\ln \left| \frac{x_{n_{j-1}+1}}{\sqrt{n}} \right| \right]^2 \xrightarrow{d} \int_0^1 [\ln |W(r)|]^2 dr.
\]

Proof of Lemma 1: See de Jong (2004) or Pötscher (2004). ■

Proof of Theorem 2: Consider

\[
H_n = \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \ln \left| \frac{x_{nt}}{\sqrt{n}} \right| \ln \left| \frac{x_{n_{j-1}+1}}{\sqrt{n}} \right|.
\]

The theorem can be proved by showing that

\[
H_n \xrightarrow{d} H_\varepsilon \text{ as } n \to \infty \text{ for all } \varepsilon > 0, \quad (I)
\]

\[
H_\varepsilon \xrightarrow{d} I \text{ as } \varepsilon \to 0, \quad (II)
\]

and

\[
\lim_{\varepsilon \to 0} \limsup_{n \to \infty} E|H_n - H_{n\varepsilon}| = 0 \quad (III)
\]

where

\[
H_{n\varepsilon} = \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} T_\varepsilon \left(\frac{x_{nt}}{\sqrt{n}} \right) T_\varepsilon \left(\frac{x_{n_{j-1}+1}}{\sqrt{n}} \right),
\]

\[
H_\varepsilon = \int_0^1 [T_\varepsilon(W(r))]^2 dr,
\]

23
and

\[I = \int_0^1 [\ln |W(r)|]^2 dr. \]

Note that (I) holds by the continuous mapping theorem, and (II) holds by the occupation times formula; see de Jong (2004, p.633-635). For (III), it follows that

\[
\limsup_{n \to \infty} E|H_n - H_{ne}| \leq \limsup_{n \to \infty} E \left| \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_j-1}^{n_j} \left[\ln \left| \frac{x_t}{\sqrt{n}} \right| - T_\varepsilon \left(\frac{x_t}{\sqrt{n}} \right) \right] \right| \ln \left| \frac{x_{n_j-1+1}}{\sqrt{n}} \right| \leq \limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_j-1}^{n_j} E \left[\ln \left| \frac{x_t}{\sqrt{n}} \right| - T_\varepsilon \left(\frac{x_t}{\sqrt{n}} \right) \right]^2 \leq \left[\sup_{t \in \mathbb{R}} f_t(y) \right] \left[\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_j-1}^{n_j} \int_{-\infty}^{\infty} [Q_\varepsilon(\sqrt{t}/\sqrt{n})]^2 f_t(y) dy \right].
\]

For (4), we have by the Cauchy-Schwartz inequality,

\[
\limsup_{n \to \infty} E \left| \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_j-1}^{n_j} \left[\ln \left| \frac{x_t}{\sqrt{n}} \right| - T_\varepsilon \left(\frac{x_t}{\sqrt{n}} \right) \right] \right| \ln \left| \frac{x_{n_j-1+1}}{\sqrt{n}} \right| \leq \limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_j-1}^{n_j} E \left[\ln \left| \frac{x_t}{\sqrt{n}} \right| - T_\varepsilon \left(\frac{x_t}{\sqrt{n}} \right) \right]^2 \leq \left[\sup_{t \in \mathbb{R}} f_t(y) \right] \left[\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_j-1}^{n_j} \int_{-\infty}^{\infty} [Q_\varepsilon(\sqrt{t}/\sqrt{n})]^2 f_t(y) dy \right].
\]

It will be shown that the first term converges to zero as \(\varepsilon \to 0 \), and the second term is bounded. For the first term, let \(Q_\varepsilon(x) = (\ln(\varepsilon) - \ln |x|)I(|x| < \varepsilon) \) and \(f_t(\cdot) \) be the density of \(\frac{x_t}{\sqrt{t}} \). Then by using the substitution \(y = \frac{x_t}{\sqrt{t}} \), we have

\[
\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_j-1}^{n_j} E \left[\ln \left| \frac{x_t}{\sqrt{n}} \right| - T_\varepsilon \left(\frac{x_t}{\sqrt{n}} \right) \right]^2 = \limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_j-1}^{n_j} \int_{-\infty}^{\infty} [Q_\varepsilon(\sqrt{t}/\sqrt{n})]^2 f_t(y) dy \leq \left[\sup_{t \in \mathbb{R}} f_t(y) \right] \left[\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_j-1}^{n_j} \int_{-\infty}^{\infty} [Q_\varepsilon(\sqrt{t}/\sqrt{n})]^2 f_t(y) dy \right] \leq \left[\sup_{t \in \mathbb{R}} f_t(y) \right] \left[\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_j-1}^{n_j} \frac{\sqrt{n}}{\sqrt{t}} \left[\int_{-\infty}^{\infty} [Q_\varepsilon(x)]^2 dx \right] \right] \to 0 \quad \text{as} \quad \varepsilon \to 0.
\]

Note that \(f_t(y) \) is uniformly bounded over \(t \), and that \(\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{k_n} \frac{\sqrt{n}}{\sqrt{t}} = 2 \). Also note that

\[
\lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} [Q_\varepsilon(x)]^2 dx = \lim_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} [\ln |x| - \ln(\varepsilon)]^2 dx = 0
\]

24
since the logarithm function and its square are locally integrable. For the second term, again by using the substitution $y = \frac{x_{n_j-1}^{1+}\sqrt{n_k}}{n_j-1+1}$, we have

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_j-1+1}^{n_j} E \left[\log \left| \frac{x_{n_j-1+1}^{1+}\sqrt{n_k}}{n_j-1+1} \right| \right]^2 = \limsup_{n \to \infty} \frac{1}{k_n} \sum_{j=1}^{k_n} E \left[\log \left| \frac{x_{n_j-1+1}^{1+}\sqrt{n_k}}{n_j-1+1} \right| \right]^2$$

$$= \limsup_{n \to \infty} \frac{1}{k_n} \sum_{j=1}^{k_n} \int_{-\infty}^{\infty} \left[\log \left(\frac{\sqrt{n_{j-1}} + 1}{\sqrt{n_j}} y \right) \right]^2 f_{n_j-1+1}(y) dy$$

$$= \limsup_{n \to \infty} \frac{1}{k_n} \sum_{j=1}^{k_n} \int_{-\infty}^{\infty} \left[\log |x|^2 f_{n_j-1+1}(x) dx \right]$$

$$= \limsup_{n \to \infty} \frac{1}{k_n} \sum_{j=1}^{k_n} \int_{-\infty}^{\infty} \left[\log |x|^2 f_{n_j-1+1}(x) dx + \int_{\mathbb{R} \setminus [-1, 1]} \log |x|^2 f_{n_j-1+1}(x) dx \right]$$

$$\leq \left[\limsup_{n \to \infty} \frac{1}{k_n} \sum_{j=1}^{k_n} \log \left(\frac{\sqrt{n_{j-1}} + 1}{\sqrt{n_j}} \right) \right] \left[\sup_t \sup_{x \in [-1, 1]} f_t(x) \right] \left[\int_{-1}^{1} |\log |x||^2 dx \right]$$

$$+ \left[\limsup_{n \to \infty} \frac{1}{k_n} \sum_{j=1}^{k_n} \log \left(\frac{\sqrt{n_{j-1}} + 1}{\sqrt{n_j}} \right) \right] \left[\sup_{t \in \mathbb{R} \setminus [-1, 1]} |x|^2 f_t(x) dx \right]$$

$$< \infty.$$

Note that the first inequality holds because $|\log |x||^2 < |x|^2$ if $|x| > 1$. Also note that

$$\left[\sup_{t \in [-1, 1]} f_t(x) \right] \left[\int_{-1}^{1} |\log |x||^2 dx \right] < \infty$$

because $f_t(x)$ is uniformly bounded over t and the logarithm function and its square are locally integrable, and that

$$\sup_{t \in \mathbb{R} \setminus [-1, 1]} |x|^2 f_t(x) dx < \sup_{t \in \mathbb{R} \setminus [-1, 1]} |x|^2 f_t(x) dx = \sup_{t \in \mathbb{R} \setminus [-1, 1]} E \left| \frac{x_t}{\sqrt{t}} \right|^2 < \infty$$

by Assumption 1, 2 and 3. For (5), we have again by the Cauchy-Schwartz inequality,

$$\limsup_{n \to \infty} E \left[\frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} T_{\varepsilon} \left(\frac{x_t}{\sqrt{n}} \right) \left[\log \left(\frac{x_{n_{j-1}+1}^{1+}\sqrt{n_k}}{n_{j-1}+1} \right) \right] - T_{\varepsilon} \left(\frac{x_{n_{j-1}+1}^{1+}\sqrt{n_k}}{n_{j-1}+1} \right) \right]^2$$

$$\leq \left[\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} E \left[T_{\varepsilon} \left(\frac{x_t}{\sqrt{n}} \right) \right]^2 \right]$$

$$\cdot \left[\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} E \left[\log \left(\frac{x_{n_{j-1}+1}^{1+}\sqrt{n_k}}{n_{j-1}+1} \right) - T_{\varepsilon} \left(\frac{x_{n_{j-1}+1}^{1+}\sqrt{n_k}}{n_{j-1}+1} \right) \right]^2 \right].$$

Similarly, it can be shown that the second term converges to zero as $\varepsilon \to 0$, and that the first term is bounded. This finishes the proof. \blacksquare
Proof of Theorem 3: The NCLS estimator \(\tilde{\beta}_1 \) satisfies

\[
\sqrt{n}(\tilde{\beta}_1 - \beta_1) = \frac{1}{\sqrt{n}} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \left(\ln \frac{x_{n_{j-1}+1}}{\sqrt{n}} - \ln \frac{x_t}{\sqrt{n}} \right) [u_t - \bar{u}]
\]

where \(\bar{X}_t \) indicate the sample average of \(X_t \). For the numerator, we have

\[
\frac{1}{\sqrt{n}} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \ln \frac{x_{n_{j-1}+1}}{\sqrt{n}} [u_t - \bar{u}]
\]

Note that

\[
\sqrt{n \bar{u}_t} \xrightarrow{d} U(1)
\]

and

\[
\frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \ln \frac{x_{n_{j-1}+1}}{\sqrt{n}} \xrightarrow{d} \int_0^1 \ln |W(r)| dr
\]

by Lemma 1. For the denominator,

\[
\frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \left[\ln \frac{x_{n_{j-1}+1}}{\sqrt{n}} - \ln \frac{x_t}{\sqrt{n}} \right] - \left[\ln \frac{x_t}{\sqrt{n}} \right] = \left[\ln \frac{x_t}{\sqrt{n}} \right] - \left[\ln \frac{x_t}{\sqrt{n}} \right]
\]

Note that

\[
\frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \ln \frac{x_{n_{j-1}+1}}{\sqrt{n}} \ln \frac{x_t}{\sqrt{n}} \xrightarrow{d} \int_0^1 (\ln |W(r)|)^2 dr
\]

by Theorem 2, and that

\[
\ln \frac{x_t}{\sqrt{n}} \xrightarrow{d} \int_0^1 \ln |W(r)| dr
\]
and
\[
\frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} \ln \left| \frac{x_{n_{j-1}+1}}{\sqrt{n}} \right| \cdot \int_{0}^{1} \ln |W(r)| dr
\]
by Lemma 1.

Proof of Theorem 4: By Corollary 3 in Jansson (2002, p.1452), it suffices to show that under Assumption 1, 2, 3 and 4, Assumption A5(ii) in Jansson (2002), which is restated below, is satisfied.

A5(ii): \(\sqrt{n}(\hat{\theta} - \theta) = O_p(1) \) and
\[
\sup_{t \geq 1} E \left(\sup_{\theta \in \mathcal{N}} \left| \frac{\partial V_t(\theta)}{\partial \theta} \right| \right) < \infty \quad \text{for some neighborhood } \mathcal{N} \text{ of } \theta.
\]

By letting \(V_t(\theta) = u_t(\beta), \theta = \beta_1, \) and \(\hat{\theta} = \bar{\beta}_1, \) we have
\[
V_t(\theta) = (y_t - \bar{y}_t) - \theta \left(\ln \left| \frac{x_t}{\sqrt{n}} \right| - \ln \left| \frac{x_t}{\sqrt{n}} \right| \right) + \bar{\pi}.
\]

Note that \(\sqrt{n}(\bar{\beta}_1 - \beta_1) = O_p(1) \) by Theorem 3, and that
\[
\sup_{t \geq 1} E \left(\sup_{\theta \in \mathcal{N}} \left| \frac{\partial V_t(\theta)}{\partial \theta} \right| \right) = \sup_{t \geq 1} E \left[\ln \left| \frac{x_t}{\sqrt{n}} \right| - \ln \left| \frac{x_t}{\sqrt{n}} \right| \right]^2
\]
\[
= \sup_{t \geq 1} E \left[\ln \left| \frac{x_t}{\sqrt{t}} \right| - \ln \left| \frac{x_t}{\sqrt{t}} \right| + \ln \left| \frac{\sqrt{t}}{\sqrt{n}} \right| - \ln \left| \frac{\sqrt{t}}{\sqrt{n}} \right| \right]^2
\]
\[
\leq 2 \sup_{t \geq 1} E \left[\ln \left| \frac{x_t}{\sqrt{t}} \right| - \ln \left| \frac{x_t}{\sqrt{t}} \right| \right]^2 + 2 \sup_{t \geq 1} E \left[\ln \left| \frac{\sqrt{t}}{\sqrt{n}} \right| - \ln \left| \frac{\sqrt{t}}{\sqrt{n}} \right| \right]^2
\]
\[
< \infty.
\]

Note that the first term is finite since under Assumption 1, 2 and 3, \(\frac{x_t}{\sqrt{t}} \) has the density \(f_t(\cdot) \) that is uniformly bounded over \(t \), and the logarithm and its square are locally integrable functions. Also note that the second term is finite too.

Proof of Theorem 5: The fully modified NCLS estimator \(\hat{\beta}_1 \) satisfies
\[
\sqrt{n}(\bar{\beta}_1 - \beta_1) = \frac{1}{\sqrt{n}} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} (\ln |x_{n_j-1+1}| - \ln |x_{n_j-1+1}|)(\hat{u}_t^j - \tilde{u}_t^j)
\]
\[
= \frac{1}{\sqrt{n}} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} (\ln |x_{n_j-1+1}| - \ln |x_{n_j-1+1}|)(\hat{u}_t^j - \tilde{u}_t^j)
\]
\[
= \frac{1}{\sqrt{n}} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} (\ln |x_{n_j-1+1}| - \ln |x_{n_j-1+1}|)(\hat{u}_t^j - \tilde{u}_t^j).
\]
Since by Theorem 3,

\[
\frac{1}{\sqrt{n}} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} (\ln |x_{n_{j-1}+1}| - \ln |x_{n_{j-1}+1}|)u_i^j
\]

\[
= \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} (\ln |x_{n_{j-1}+1}| - \ln |x_{n_{j-1}+1}|)(\ln |x_t| - \ln |x_t|)
\]

\[
d \int_0^1 \ln |W(r)|dU^\dagger(r) - U^\dagger(1) \int_0^1 \ln |W(r)|dr
\]

\[
= \left[\int_0^1 \ln |W(r)|dr \right]^2
\]

\[
it suffices to show that
\]

\[
\frac{1}{\sqrt{n}} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} (\ln |x_{n_{j-1}+1}| - \ln |x_{n_{j-1}+1}|)(\hat{u}_t^j - u_t^j)
\]

\[
= \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} (\ln |x_{n_{j-1}+1}| - \ln |x_{n_{j-1}+1}|)(\ln |x_t| - \ln |x_t|)
\]

\[
= \frac{1}{n} \sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} (\ln |x_{n_{j-1}+1}| - \ln |x_{n_{j-1}+1}|)(\ln |x_t| - \ln |x_t|)
\]

\[
p \rightarrow 0.
\]

It is equivalent to show that the numerator converges to zero in probability because the denominator converges in distribution to an almost surely positive random variable by Theorem 2. To show that the numerator converges to zero in probability, note that

\[
= \left[\hat{\Omega}_{21} \hat{\Omega}_{22}^{-1} - \hat{\Omega}_{21} \hat{\Omega}_{22}^{-1} \right] \left[\sum_{j=1}^{k_n} \sum_{t=n_{j-1}+1}^{n_j} (\ln |x_{n_{j-1}+1}| - \ln |x_{n_{j-1}+1}|) \Delta x_t \right]
\]

\[
= \left[\hat{\Omega}_{21} \hat{\Omega}_{22}^{-1} - \hat{\Omega}_{21} \hat{\Omega}_{22}^{-1} \right] \cdot C_n \xrightarrow{p} 0 \text{ as } n \to \infty
\]

because \(\hat{\Omega} \) is a consistent estimator for \(\Omega \) by Theorem 4, and \(C_n \) is \(O_p(1) \) by Theorem 1.
References

