Instructions for "Implementing Efficient Multi-Object Auction Institutions"

INSTRUCTIONS

This is an experiment in the economics of market decision making. Various research organizations have provided funds for conducting this research. The instructions are simple, and if you follow them carefully and make good decisions, you may earn a CONSIDERABLE AMOUNT OF MONEY which will be PAID TO YOU IN CASH at the end of the experiment.

In this experiment, we will create a market in which you will act as bidders in a sequence of auctions.

In each auction:

1. Each bidder will be assigned values for two (2) units of a commodity they wish to purchase. The values of both units will be the same. These values represent the value of the good to you – what we will pay you for any items purchased.

2. Each bidder bids for each of the two (2) units assigned to him/her (bids must be greater than or equal to zero).

3. Each of you will be bidding in a separate market along with three (3) computerized bidders. Each computerized bidder will be assigned a value for one (1) unit of the commodity. Each computerized bidder will submit a bid on its one unit. Thus, in each auction there will be a total of 5 values and 5 bids.

4. Values for all bidders (including the computers) will be randomly drawn from an interval whose lower bound is $0 and whose upper bound is $7.50. Any value within this interval has an equally likely chance of being drawn and being assigned as a value. Note, it is possible (but unlikely) that you will have the same value in a given period as one of the computer bidders. New values will be drawn before each auction.

5. There will be two (2) units for sale in each auction.

Assignment rules and profit calculations:

1. Bids will be ranked from highest to lowest and the two (2) highest bids will each be awarded one unit of the commodity.

2. The price paid by those earning an item is equal to the highest rejected bid; the 3rd highest bid. This is called a uniform price auction – everyone pays the same price.

3. If you earn an item, your earnings will be equal to the value of the unit earned (not the amount bid) less the market price (the 3rd highest bid). Any unit earned at a price below its value results in a positive profit; any unit earned at a price above its value results in a negative profit. Positive profits will be added to (negative profits subtracted from) the owner's capital balance. If you do not earn an item you neither earn or lose money.

4. The computers' bids will always equal their value.
The following examples will illustrate the prices you will pay for any items earned and how profits are calculated. There are two cases to consider:

Case 1: You earn a single item. In this case what you will pay for the item will be equal to the second highest computer’s value.

Example 1:

<table>
<thead>
<tr>
<th>Bid</th>
<th>Value</th>
<th>Subj</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.06</td>
<td>7.08</td>
<td>*</td>
</tr>
<tr>
<td>5.10</td>
<td>5.10</td>
<td>C</td>
</tr>
</tbody>
</table>

Note bids have been sorted from highest to lowest, values are shown next to the bids. A * under the Subj column indicates the human’s bids and a C indicates a computer’s bid (note that the computers always bid their value).

In this case both the human bidder (*) and one of the computers each earned an item. The second highest computer’s bid is 4.31, so that is what * will pay for the item earned. This would yield profits for * of:

Unit 1: 7.08 - 4.31 = 2.77
and nothing on unit 2.

Example 2:

<table>
<thead>
<tr>
<th>Bid</th>
<th>Value</th>
<th>Subj</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.06</td>
<td>7.08</td>
<td>*</td>
</tr>
<tr>
<td>5.10</td>
<td>5.10</td>
<td>C</td>
</tr>
</tbody>
</table>

Once again the human bidder * and one of the computers each earned an item. Once again the second highest computer’s bid is 4.31, so that is what * will pay for the item earned. This would again yield profits for * of:

Unit 1: 7.08 - 4.31 = 2.77
and nothing on unit 2.

Case 2: You earn both items. In this case what you will pay for the two items will be equal to the sum of the first and second highest computer’s values.

Example 3:

<table>
<thead>
<tr>
<th>Bid</th>
<th>Value</th>
<th>Subj</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.06</td>
<td>7.08</td>
<td>*</td>
</tr>
<tr>
<td>7.05</td>
<td>7.08</td>
<td>*</td>
</tr>
</tbody>
</table>

Unit 1: 7.08 - 4.31 = 2.77
and nothing on unit 2.
The first and second highest computer’s values are 5.10 and 4.31. So that *’s total profits are:

Total profits = 14.16 - 9.41 = 4.75 [(7.08 + 7.08) - (5.10 + 4.31)].

These pricing rules are designed to enforce the following general principle: What you pay will be equal to the value(s) of the computer(s) that would have earned an item had your bids been deleted. One outcome of this rule is that you will only pay what you bid in the unlikely event that one of the computers has the same value as your bid.

Of course you can’t always earn money in the auction and it is possible to lose money as the following examples illustrate:

Example 4:

<table>
<thead>
<tr>
<th>Bid</th>
<th>Value</th>
<th>Subj</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.20</td>
<td>7.20</td>
<td>C</td>
</tr>
<tr>
<td>7.00</td>
<td>5.75</td>
<td>*</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.80</td>
</tr>
<tr>
<td>5.75</td>
</tr>
<tr>
<td>3.07</td>
</tr>
</tbody>
</table>

In this case both * and one of the computers each earned an item. So * will pay a price equal to the second highest computer’s value which is 6.80. This would yield profits for * of:

Unit 1: 5.75 - 6.80 = -1.05
And nothing on unit 2.

Example 5:

<table>
<thead>
<tr>
<th>Bid</th>
<th>Value</th>
<th>Subj</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.00</td>
<td>5.75</td>
<td>*</td>
</tr>
<tr>
<td>6.90</td>
<td>5.75</td>
<td>*</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.80</td>
</tr>
<tr>
<td>6.50</td>
</tr>
<tr>
<td>3.07</td>
</tr>
</tbody>
</table>

In this case * earns two items. The highest and the second highest computers values are 7.20 and 6.80 so that *’s total profits are:

Total profits = 11.50 - 13.30 = -1.20 [(5.75 + 5.75) - (6.80 + 6.50)]

Note, any negative profits earned will be subtracted from your starting cash balance (or positive profits earned in other auction periods).

Of course there is no reason * had to lose money in these cases. Had * bid at or below the value of each of his items, the computers would have each earned all the items and * would have earned 0.00 for the auction rather than losing money.
Additional Remarks:

1. In case of ties among the high bids - for example the 2nd and 3rd highest bid are the same - the computer will randomly determine which of the two bids is the second highest and earns an item.

2. You are free to bid whatever you think will bring you the most earnings. However, for programming purposes we have adopted the convention that the bid for the second unit listed on your computer screen must be less than or equal to the bid on the first unit listed. Finally, in thinking about bidding, earning an item is of no intrinsic value. Your sole objective should be to maximize your earnings.

3. You will all be given a starting capital balance of $5.00. Any losses will be subtracted from this balance, any profits added to it. Your final balance will be paid to you in cash at the end of the experiment.

4. Each of you will be operating in your own market with 3 (different) computerized bidders.

5. We will conduct 3 dry runs to familiarize you with the procedures and accounting rules. This will be followed by 27 periods played for cash.

Are there any questions?
Ausubel With Dropout Information Provided:

This is an experiment in the economics of market decision making. Various research organizations have provided funds for conducting this research. The instructions are simple, and if you follow them carefully and make good decisions, you may earn a CONSIDERABLE AMOUNT OF MONEY which will be PAID TO YOU IN CASH at the end of the experiment.

In this experiment, we will create a market in which you will act as bidders in a sequence of auctions.

In each auction:

1. Each bidder will be assigned values for two (2) units of a commodity they wish to purchase. The values of both units will be the same. These values represent the value of the good to you - what we will pay you for any items purchased.

2. Each bidder bids for each of the two (2) units assigned to him/her.

3. Each of you will be bidding in a separate market along with three (3) computerized bidders. Each computerized bidder will be assigned a value for one (1) unit of the commodity which they will be bidding on. Thus, in each auction there will be a total of 5 units being bid on (your 2 units and the 3 computer units).

4. Values for all bidders (including the computers) will be randomly drawn from an interval whose lower bound is $0 and whose upper bound is $7.50. Any value within this interval has an equally likely chance of being drawn and being assigned as a value. Note, it is possible (but unlikely) that you will have the same value in a given period as one of the computer bidders. New values will be drawn before each auction.

5. There will be two (2) units for sale in each auction.

Assignment rules and profit calculations:

Items will be allocated using the following “English clock” auction procedure:

Prices will start at 0.00 and will rapidly increase using a “clock” counter located at the bottom of your screen. You are counted as actively bidding on an item until you have dropped out or have “clinched” an item. Dropping out is not reversible so that once you have dropped out of bidding for an item you can no longer bid on that item. Once you have clinched an item, it is yours and you pay the “clinching” price.

Before discussing clinching let’s discuss dropping out.

1. All computer bidders are programmed to drop out when the price equals the value of their item.

2. You can drop out of bidding for an item by hitting any key on your key pad. One key stroke drops you from bidding on one item. To stop bidding on the second item hit any key again. If you want to drop out of bidding for both items at the same time (price) you have two options: (i) hit the number 2 key at the top of your key pad or (ii) hit a second key during the pause in the clock price that follows dropping out of bidding on the first item.

Clinching works just like in a football, baseball, or basketball league when a team clinches a spot in the playoffs, only in this case clinching involves earning an item, and the price paid for the item.
Once you have clinched an item it is yours and the price you pay is the drop-out price which assured you
of clinching the item.

Clinching is easiest to explain via some examples:

Suppose you and the computer(s) have drawn the following values for items (we’ve ranked the
computers’ values from highest to lowest) (Remember, the values for your two items are always the
same.)

Example 1:
Computers’ values Your values
5.10 7.08
4.31 7.08
3.07

The clock (price) will start at 0.00 and will increase very rapidly.

Suppose the price hits 3.07 and you have not dropped out of the bidding. The computer with value 3.17 is
programmed to drop out at this point. Once the computer drops out at 3.07 there will be 4 items still being
bid on (your two items and the two remaining computer bids) and 2 items for sale so nothing has been
clinched yet (you are still not assured of earning an item). After a brief pause the clock price will continue
moving up.

Suppose the price hits 4.31 and you have not dropped out of the bidding. With the second computer
dropping out there are now 3 items being bid on and 2 items for sale. Since you are bidding on 2 of the 3
items, and there are 2 items for sale, you are assured of earning 1 item (you have clinched one item).
With clinching you pay the drop-out price which assured you of clinching the item, 4.31. You would earn
profits for that one item of 7.08 (your value) less 4.31 (the clinching price) = 2.77.

Now again, after a brief pause, the price continues to increase. There are now 2 items being bid on (the
remaining computer bid and your remaining item) and 1 item remaining to be sold.

If you drop-out before the price hits 5.10 (the remaining computer’s drop-out price) the computer
clinches the remaining item and your total earnings from the auction would be 2.77 (what you earned on
the first item).

If the computer drops out before you do, you earn the second item and pay the clinching price for
that item, 5.10. This would produce profits on the second item of 7.08 (your value) less 5.10 (the clinching
price) = 1.98. In this case your total earnings for this auction would be 2.77 + 1.98 = 4.75.

Note, it is possible to drop-out during the pause in the clock that follows when one of the computers drops
out or you drop out. If you do this you will be counted as having dropped out at the price the clock has
paused at but be counted as dropping out after the computer has dropped out.

Of course you can’t always earn money in the auction and it is possible to lose money as the following
example illustrates.
Example 2:
Computers’ values | Your values
7.20 | 5.75
6.80 | 5.75
3.07

As before the clock starts at 0 and the first computer drops out at price 3.07. There are now 4 items being bid on and 2 items for sale. Suppose the clock price hits 5.75 and you decide to remain active bidding on an item until you’ve clinched one. When the clock price hits 6.80 you have clinched an item, but the clinching price is now above your value so you earn 5.75 (your value) less 6.80 (the clinching price) = -1.05.

Now again, after a brief pause, the clock continues to tick up. There are now 2 items being bid on (the remaining computer bid and your remaining item) and 1 item remaining to be sold.

If you drop-out before the price hits 7.20 (the computer’s drop-out price) the computer clinches the remaining item and your total earnings from the auction are -1.05 (what you earned on the first item)

If the computer drops out before you do, you earn the second item and pay the clinching price for that item, 7.20. This would produce profits on the second item of 5.75 (your value) less 7.20 (the clinching price) = -1.45. In this case your total earnings for this auction would be -1.05 - 1.45 = -2.50.

Any negative profits earned will be subtracted from your starting cash balance (or positive profits earned in other auction periods).

Of course there is no reason you have to lose money in a case like this. Had you dropped out on both items when the price reached your value, or at least before you clinched an item at a price above your value (a price of 6.80 in this case), the computers would have clinched the two items and you would earn 0.00 for the auction rather than losing money.

Additional Remarks:
1. You are free to bid whatever you think will bring you the most earnings. In thinking about bidding, earning an item is of no intrinsic value. Your sole objective should be to maximize your earnings.

2. You will all be given a starting capital balance of $5.00. Any losses will be subtracted from this balance, any profits added to it. Your final balance will be paid to you in cash at the end of the experiment.

3. Each of you will be operating in your own market with 3(different) computerized bidders. You will not know a computer’s bid/value until it has dropped out of the bidding.
4. We will conduct 3 dry runs to familiarize you with the procedures and accounting rules. This will be followed by 25 periods played for cash.

Are there any questions?
Ausubel No Dropout Information:

This is an experiment in the economics of market decision making. Various research organizations have provided funds for conducting this research. The instructions are simple, and if you follow them carefully and make good decisions, you may earn a CONSIDERABLE AMOUNT OF MONEY which will be PAID TO YOU IN CASH at the end of the experiment.

In this experiment, we will create a market in which you will act as bidders in a sequence of auctions.

In each auction:

1. Each bidder will be assigned values for two (2) units of a commodity they wish to purchase. The values of both units will be the same. These values represent the value of the good to you - what we will pay you for any items purchased.

2. Each bidder bids for each of the two (2) units assigned to him/her.

3. Each of you will be bidding in a separate market along with three (3) computerized bidders. Each computerized bidder will be assigned a value for one (1) unit of the commodity which they will be bidding on. Thus, in each auction there will be a total of 5 units being bid on (your 2 units and the 3 computer units).

4. Values for all bidders (including the computers) will be randomly drawn from an interval whose lower bound is $0 and whose upper bound is $7.50. Any value within this interval has an equally likely chance of being drawn and being assigned as a value. Note, it is possible (but unlikely) that you will have the same value in a given period as one of the computer bidders. New values will be drawn before each auction.

5. There will be two (2) units for sale in each auction.

Assignment rules and profit calculations:

Items will be allocated using the following “English clock” auction procedure:

Prices will start at 0.00 and will rapidly increase using a “clock” counter located at the bottom of your screen. You are counted as actively bidding on an item until you have dropped out or have “clinched” an item. Dropping out is not reversible so that once you have dropped out of bidding for an item you can no longer bid on that item. Once you have clinched an item, it is yours and you pay the “clinching” price.

Before discussing clinching let’s discuss dropping out.

1. All computer bidders are programmed to drop out when the price equals the value of their item. You will not know the computers’ drop out prices until the auction is over.

2. You can drop out of bidding for an item by hitting any key on your key pad. One key stroke drops you from bidding on one item. To stop bidding on the second item hit any key again. If you want to drop out of bidding for both items at the same time (price) you have two options: (i) hit the number 2 key at the top of your key pad or (ii) hit a second key during the pause in the clock price that follows dropping out of bidding on the first item.

Clinching works just like in a football, baseball, or basketball league when a team clinches a spot in the playoffs, only in this case clinching involves earning an item, and the price paid for the item.
Once you have clinched an item it is yours and the price you pay is the drop-out price which assured you of clinching the item.
Clinching is easiest to explain via some examples:

Suppose you and the computer(s) have drawn the following values for items (we’ve ranked the computers’ values from highest to lowest) (Remember, the values for your two items are always the same.)

Example 1:

<table>
<thead>
<tr>
<th>Computers’ values</th>
<th>Your values</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10</td>
<td>7.08</td>
</tr>
<tr>
<td>4.31</td>
<td>7.08</td>
</tr>
<tr>
<td>3.07</td>
<td></td>
</tr>
</tbody>
</table>

The clock (price) will start at 0.00 and will increase very rapidly.

Suppose the price hits 3.07 and you have not dropped out of the bidding. The computer with value 3.17 is programmed to drop out at this point. Once the computer drops out at 3.07 there will be 4 items still being bid on (your two items and the two remaining computer bids) and 2 items for sale so nothing has been clinched yet (you are still not assured of earning an item).

Suppose the price hits 4.31 and you have not dropped out of the bidding. With the second computer dropping out there are now 3 items being bid on and 2 items for sale. Since you are bidding on 2 of the 3 items, and there are 2 items for sale, you are assured of earning 1 item (you have clinched one item). With clinching you pay the drop-out price which assured you of clinching the item, 4.31. You would earn profits for that one item of 7.08 (your value) less 4.31 (the clinching price) = 2.77.

There are now 2 items being bid on (the remaining computer bid and your remaining item) and 1 item remaining to be sold.

If you drop-out before the price hits 5.10 (the remaining computer’s drop-out price) the computer clinches the remaining item and your total earnings from the auction would be 2.77 (what you earned on the first item).

If the computer drops out before you do, you earn the second item and pay the clinching price for that item, 5.10. This would produce profits on the second item of 7.08 (your value) less 5.10 (the clinching price) = 1.98. In this case your total earnings for this auction would be 2.77 + 1.98 = 4.75.

Note, since you will not know the prices at which the computers have dropped out of the bidding you will not know, until the auction is over, if you have clinched an item or the price you will have to pay for any items clinched.

Of course you can’t always earn money in the auction and it is possible to lose money as the following example illustrates.
Example 2:

<table>
<thead>
<tr>
<th>Computers’ values</th>
<th>Your values</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.20</td>
<td>5.75</td>
</tr>
<tr>
<td>6.80</td>
<td>5.75</td>
</tr>
<tr>
<td>3.07</td>
<td></td>
</tr>
</tbody>
</table>

As before the clock starts at 0 and the first computer drops out at price 3.07. There are now 4 items being bid on and 2 items for sale. Suppose the clock price hits 5.75 and you decide to remain active bidding on an item until you’ve clinched one. When the clock price hits 6.80 you have clinched an item, but the clinching price is now above your value so you earn 5.75 (your value) less 6.80 (the clinching price) = -1.05.

There are now 2 items being bid on (the remaining computer bid and your remaining item) and 1 item remaining to be sold.

If you drop-out before the price hits 7.20 (the computer’s drop-out price) the computer clinches the remaining item and your total earnings from the auction are -1.05 (what you earned on the first item)

If the computer drops out before you do, you earn the second item and pay the clinching price for that item, 7.20. This would produce profits on the second item of 5.75 (your value) less 7.20 (the clinching price) = -1.45. In this case your total earnings for this auction would be -1.05 - 1.45 = -2.50.

Any negative profits earned will be subtracted from your starting cash balance (or positive profits earned in other auction periods).

Of course there is no reason you have to lose money in a case like this. Had you dropped out on both items when the price reached your value, or at least before you clinched an item at a price above your value (a price of 6.80 in this case), the computers would have clinched the two items and you would earn 0.00 for the auction rather than losing money.

Additional Remarks:

1. You are free to bid whatever you think will bring you the most earnings. In thinking about bidding, earning an item is of no intrinsic value. Your sole objective should be to maximize your earnings.

2. You will all be given a starting capital balance of $5.00. Any losses will be subtracted from this balance, any profits added to it. Your final balance will be paid to you in cash at the end of the experiment.

3. Each of you will be operating in your own market with 3(different) computerized bidders. You will not know a computer’s bid/value until it has dropped out of the bidding.

4. We will conduct 3 dry runs to familiarize you with the procedures and accounting rules. This will be followed by 27 periods played for cash.

Are there any questions?