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1.  Introduction.  Adler, Feldman and Taqqu (1998) preface their collection of papers with the 
observation that ever since information has been gathered, it has either been categorized as “good data” 
(translation:  the investigator knew how to choose and perform the appropriate statistical tests) or “bad 
data” (that is, the observations did not conform to well-known and well-understood distributions, often 
having too many outliers or outliers that were too far from what was expected).  This may lead to some 
studies not being completed at all, while others may interpret the data without taking advantage of the 
totality of information present. 
 
The determination of distributional assumptions in econometric and financial models is an important 
concern.  If the distribution of error terms is inconsistent with the assumed model, then the assumed model 
is misspecified.  If a set of assumptions concerning error terms exists and is not used then estimates of a 
model’s parameters are needlessly inefficient. 
 
Though there is a critical need in financial and economic models to match the right tool to the right 
distribution, the tests suggested herein are not restricted to those disciplines.  This question is just as 
important in many other fields; wherever “bad data” reside, better tools are needed to transform them into 
their “better understood” foils.   

 
Many often-used modeling techniques such as Ordinary Least Squares (OLS) and the Generalized Method 
of Moments (GMM) do not require the specification of the distribution of the error terms.  Appealing to 
different versions of the law of large numbers, estimators of parameters using these techniques can be 
shown to be consistent. In addition, estimators can be shown to be consistent under certain moment 
conditions.  Since some laws of large numbers depend only on the first moment, specification of a finite 
variance is not even required.  However, Maximum Likelihood (ML) Estimators that exploit the properties 
of a particular distribution are not only consistent but also asymptotically efficient. 
 
In some cases the investigator may be satisfied with a lesser level of relative efficiency in estimating the 
expected value of a random variable if the burden of searching for a more efficient estimation method is too 
difficult.  However, consider the example of risk-averse agents making inferences concerning future values 
of a financial time series.  With risk-neutral agents, it may be enough to estimate expected values of 
returns.  However, with risk-averse agents it is well known that second and higher moments of distributions 
matter in the selection of an optimal investment portfolio.  In addition, it is often desirable to place 
confidence limits on estimates of expected values, to calculate variances, and perhaps measures of 
skewness and kurtosis.  To accomplish these goals, one should not use the classical methodologies, such as 
least squares for calculating means and variances conditional upon exogenous variables perhaps using an 
assumption that all error terms are to be assumed to be a random sample independently drawn from normal 
distributions with an identical yet unknown mean and variance, unless the assumptions of the model 
selected are at least approximately satisfied. 
 
There are many tests that have been offered in the literature for determining whether an observed sample is 
likely to have been drawn from a normal distribution.  There are also more robust, distribution-free or 
nonparametric tests that can be used.  However, in many cases taking advantage of additional distributional 
information may lead to more efficient inferences and is to be preferred over the automatic use of 
nonparametric methods. 
 
With some models previous work by others suggest distributions to be hypothesized.  It is well known in 
financial literature that error terms of returns of many assets are leptokurtic, with an unusually high number 
of observations several standard deviations from the mean.  This phenomenon suggests that it is 
inappropriate to make an assumption of normality in dealing with estimates arising from the use of such 
samples drawn from real world data.  In addition it may be helpful to estimate parameters by something 
other than minimizing a quadratic form.  As is well known, using least squares estimators is equivalent to 
using maximum likelihood estimators when the underlying error distribution is Gaussian.  With other 
distributional assumptions, this relationship disappears. 
 
Some applied practitioners show parameter estimates calculated both with and without observations that 
have residuals more than a given number of standard errors from zero.  This throwing away of data (or, in 
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some cases, reducing some observations’ distances from the median or reducing their impact on the model) 
without just cause should make theoreticians cringe.  However, if the calculation methods are least-squares 
based and the error terms are distributed with a distribution that has an infinite variance, it may be that the 
truncated or a “Winsorized”1 estimator actually has a greater probability of being within a given distance 
from the true parameter than the least squares estimator. 
 
With financial time series, several non-Gaussian distributions have been suggested with the hope that one 
of these may be more appropriate in making inferences.  Among these are stable distributions (also called 
stable Pareto-Lévy or stable Paretian distributions), which include the normal distribution as a special case.  
Other distributions that are considered as substitutes are mixtures of more than one normal distribution, 
generalized Student-t distributions and distributions that are mixtures of continuous distributions and 
discrete distributions which are used to account for sudden increases or decreases in a sample.  Since the 
early 1980s Autoregressive Conditionally Heteroskedastic (ARCH) and Generalized Autoregressive 
Conditionally Heteroskedastic (GARCH) models have also been used to try to explain distributions of error 
terms that are not independent and identically distributed (IID). 
 
Two additional reasons for attempting to determine the distribution of error terms follow.  First, if a 
particular distribution is determined not to be the underlying distribution of the error terms, by implication, 
at least one of the necessary assumptions for that distribution must be false.  This may lead to a new 
understanding of the observations and possibly a new theoretical model.  Second, if a particular distribution 
does have a reasonable possibility of being the underlying distribution of the error terms, one can 
extrapolate to possible values that are not apparent in the sample but could occur in the future.  That is, 
with a theoretical distribution, tail probabilities that are more remote than could be observed with the 
limited data can be estimated. 
 
This paper proceeds as follows. Section 2 outlines the distributional conclusions and assumptions of 
previous studies on financial series.  Section 3 offers a brief outline of a selected list of better-known 
influential goodness-of-fit tests (GFTs).  Section 4 discusses the special problems that exist with goodness-
of-fit tests when model parameters need to be estimated.  Section 5 discusses a general Lagrange multiplier 
GFT, while Sections 6 and 7 introduce a new Cubic Spline Lagrange multiplier GFT and shows Pearson’s 
test as being a special case of a spline GFT.  Section 8 re-introduces the classical but lesser-known Neyman 
Ψ2 GFT and suggests an LM test that is an alternative to Neyman’s likelihood ratio test, with Sections 9 
and 10 discussing the practicality of implementing such a test.  Section 11 shows extensions of the GFTs to 
general distributions and cases with estimated model parameters. Section 12 outlines some finite sample 
properties. Section 13 explores the case that is primarily faced a distribution with unknown model 
parameters.  A case study is performed in Section 14, while in Section 15 differences between competing 
distributions are investigated.   Sections 16 and 17 discuss attributes of alternative GFTs, while Section 18 
suggests some work to be completed in the future.   
 
2.  Determination of Error Distribution.  There is a wide variety of opinion of the correct error 
distribution in many financial series.  Most researchers rule out Gaussian distributions after any testing of 
skewness and kurtosis, although throughout the history of analysis, many have used them; for example, 
Fama (1976) has suggested normal distributions for monthly returns after previously (1965) being in the 
leptokurtic camp.  Mandelbrot (1963), Samorodnitsky and Taqqu (1995), and McCulloch (1996) have 
suggested the use of stable distributions.  A search for finite-variance leptokurtic distributions has included 
Blattberg and Gonedes (1974), Hagerman (1978), Perry (1983), and Boothe and Glassman (1987) 
investigating alternatives such as Student-t distributions.  Praetz (1972) and Clark (1973) explored the 
possibility of a mixture of normal distributions.  Among models with changing volatility, Bollerslev (1987) 
suggested the use of a Student-t distribution, Nelson (1991) tried a Generalized Error Distribution, and 
McCulloch (1985) used stable distributions. 

                                                        
1 Perhaps coined by John Tukey in honor of the biostatistician, Charles P. Winsor, who supposedly adopted 
the practice of replacing outliers with values closer to the median of the residual distribution, so that such 
outliers would have less impact on a model’s parameters. 
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With this literature and appropriate goodness-of-fit tests (GFTs), there would seem to be a rich array of 
parametric distributions to choose from before one must resort to nonparametric procedures. A challenge 
that this paper is aimed at is choosing appropriate GFTs that can work well with all the above distributions. 
 
3.  Some Well-Known Goodness-of-Fit Tests.  The Kolmogorov-Smirnoff statistic (KS) makes 
use of a transformation from a posited distribution to the distribution that is uniform on the unit interval.2 
KS is the largest vertical distance between the transformed empirical distribution function and a 45° line on 
the unit interval.  KS is independent of the hypothesized distribution and critical values are dependent on n, 
however it requires knowledge of the true values of the parameters in a distribution.  While this test statistic 
is sensitive to the single data value that is “farthest” away from the population cumulative distribution 
function (CDF), it does not directly take into account the relative deviations of the other observations.  
Andrews (1997) has offered a conditional K-S test that accounts for the parameter estimation effects.  Still, 
this test is based on a single point of the empirical distribution. 
 
The Cramér-von Mises test, again after transformation from the posited distribution to a uniform 
distribution, uses all the observations and is based on the integrated squared distance between the 
transformed empirical CDF and a 45° line.  Since it is based on a distribution function and not the density 
function directly, some densities may tend to “fool” it.  Consider the following example, adapted from 
McCulloch (1999), and pictured below in Charts 1(a) and 1(b), along with a uniform density on the unit 
interval: 
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The Uniform density on [0,1] is shown for comparison.  Clearly the function h1(z) is more nearly uniform 
than h2(z) from comparison of densities.  The first function is the same distance as the second from the 

Uniform for every value except the range ( ]7
4

5
2 , ; on this interval, the first function is closer to the Uniform.  

A look at the CDF’s of these random variables will highlight a weakness in the Cramér-von Mises test. 
 
The CDF of h2(z) is the same distance from the 45° degree line as is h1(z) everywhere except the interval 

( ]7
4

5
2 , ; on this interval, its distance from the Uniform is smaller that the distance of h1(z).  Thus, the 

population integrated squared distance is smaller for h2(z) than for h1(z).  Therefore, the Cramér-von Mises 
test would be less likely to reject h2(z) than h1(z) even though h2(z) departs more from the Uniform.  Since, 
a priori, the investigator is not likely to know the type of departure from the hypothesized distribution; it 
seems that a reasonable property for a GFT is to be more sensitive to greater departures. 
 

                                                        
2 Instead of using the sample, y1, … , yn , it uses the transformed sample, F (y1), … , F (yn) , where F is the 
posited distribution. 
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Chart 2(a)
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Another GFT is a transformation of the Pearson χ2 test.  Strictly speaking the Pearson test is designed to 
deal with discrete probability mass functions rather than continuous probability density functions.  For a 
multinomial distribution with n observations the test is: 
 

H0:  pj = pj0 , j = 1,…,m+13vs.  H1:  Not H0 
 

The Pearson statistic is Qm = 
( )
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 where Obsj is the number of observations in the sample 

with the jth value. 
 
A continuous distribution can be transformed to a multinomial distribution with parameters {pj} by 
segmenting the support of the distribution into m+1 sub-supports or “bins” and calculating the population 
probability for each sub-support.  It is not required that the pj be equal.  This statistic is easy to calculate, 
known to be asymptotically distributed as a χ2 statistic with m degrees of freedom and can be used in a 
wide variety of situations.  Its power is dependent both on the choice of m and the choice of {pj}.  It is 
intuitive that some power will be lost due to the reduction of information by grouping the data to test 
continuous distributions.  This grouping has the effect of assigning an equal density to all possible values 
within each bin and also, perhaps, assigning nearby values that happen to be in different bins very different 
density values.  The following example will highlight possible problems with this type of test. 
Consider a test of whether n observations are from a standard normal distribution with m+1 = 10. For 

equiprobable bins, one would need the 9 breakpoints, 





Φ −

10
1 j

, where Φ is the standard normal cumulative 

distribution function. 

           

Chart 3(a)
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Above is a graph of a standard normal density and also a contrived density (Chart 3(a)) that integrates to ½  
on either side of zero; it also integrates to very close to 0.1 between consecutive standard normal deciles.  

                                                        
3 Here m+1 is used  to facilitate future comparison with other tests.  There are only m probability 
parameters being set since one of the parameters is constrained to be one minus the sum of the others. 
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Consequently, the Pearson χ2 test has no more power against the alternative than the probability that it will 
reject the null hypothesis.  
 
Also note that alternatives that are symmetric around zero based on the shown function on either the 
negative or positive support (Charts 3(b) and 3(c)) would be equally difficult to reject.  Some different 
choices of m+1 may increase the power, but m will generally be a function of the sample size, so choice of 
q is not a dependable solution to this problem. The major concern in this study with the Pearson χ2 test is 
that it will often be relatively insensitive to heavier tails that characterize many of the distributions of 
highest interest. 
 

Chart 3(b)
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Please note that this is not a direct criticism of the Pearson χ2 test since its use with discrete rather than 
continuous data is its strength, although many texts omit this. 
 
4.  Estimated Model Parameters. In most models the residuals are estimates of the unknown 
underlying errors.  Roughly speaking, one can visually assess and infer a distribution of error terms from a 
histogram of residuals.  However, a visual assessment should be reduced to a mathematical assessment, 
since histograms will necessarily differ from underlying distributions and what is desired is a determination 
of whether or not the histogram in question is statistically significantly different from the hypothesized 
theoretical distribution.  For this task, GFTs must be designed to meet the varying needs of each situation. 
 
In general, the error random variables to be tested are unobservable.  With a standard regression model: 
   yi = h(Xi;β )+ ε i      (1) 
is assumed to be true with i = 1,…n, where yi is the ith observed dependent variable, Xi is a row vector (with 
dimension k) of known constants  (or is uncorrelated with the vector of ε’s)4, β is a k-vector of unknown 
coefficients, and ε i  is an unobservable random variable with some distribution, with E(εi) = 0 (or possibly 
the median of εi’s distribution is zero), Pr(εi < z) = F(z;γ), γ ∈ Γ, and εi is independent of εj if i ≠ j.  The 
function h(Xi;β ) could be linear or non-linear. 

Under these assumptions we would like to test whether the vector ε  = [ ]′nεε L1 is distributed 

according to the given function or if it has some other distribution.  Typically, one must estimate β and γ, 
after which one can find a vector of residuals, e, that is an estimate of ε, rather than ε itself.  If parameters 
are to be estimated from the data prior to the application of a GFT, standard tests are biased towards 
acceptance of the null hypothesis.  See Mood, Graybill & Boes (1974), Bera and McKenzie (1986), and Bai 
(1997).  DeGroot (1986) cites Chernoff and Lehmann’s (1954) discovery that the use of maximum 
likelihood estimates, when testing whether a given distribution is normal, changes the asymptotic 
distribution of the test statistic under the null hypothesis in such a way as to result in smaller values.  Given 
that larger values are necessary to reject the null hypothesis, this results in a greater than desired level of 
acceptance. 
 

                                                        
4 As usual, it is further assumed that the matrix whose rows are composed of the Xi’s are of rank k. 
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 Intuitively, any “good” estimators of the parameters seek to fit the model as closely as possible.  For 
example, with a classical linear regression and leptokurtic errors, the sum of the squared true errors will 
almost surely be greater than5 the sum of the squared residuals.  This will tend to conceal the large errors 
that a test for leptokurtosis would be seeking. 
 
Rayner and Best suggest a solution to the problem of testing for normality using residuals of equation (1) 
for a classical linear model, with the error terms assumed to be IID with the CDF given as N(0,σ2).  By 
taking advantage of the familiar result from linear regression: 

e = Mε , where M = I – X(X'X)-1X' (2) 
it is possible to simulate sets of residuals by generating random variables from a standard normal 
distribution.  It is unnecessary to estimate σ2 for most purposes because all the variables can be rescaled 
from σ2 to unity.  The matrix M can be calculated only once for a given model.  Then as many simulations 
as are deemed appropriate can be used to accumulate realizations of the test statistic desired. 
 
This method should be reasonable in many cases for its purpose, but some difficulties exist.  If the random 
errors are not independent and a variance matrix Ω is known, M can be modified in the familiar way for 
generalized least squares.  However, generally Ω must be estimated complicating any interpretation 
between the ε vector and the residuals.  M has dimensions n × n and may be troublesome for especially 
large databases.  This procedure may not be able to be extended in a straightforward manner to 
accommodate other situations that may arise such as non-linear regression or non-Gaussian error terms.  
So, the search remains for suitable alternate tests. 
 
5. Lagrange Multiplier (LM) Test6 for a Uniform Distribution.  Consider a random sample 
x = (x1,…,xn)'  from an unknown distribution F(X).  One would like to test: 
 
  H0:  X ~ U(0,1) vs. H1:  Not H0 
 
One could parameterize the alternative hypothesis in the following way: 

  H1:  X ~ G(z) where G(z) = ( ) dvv
z m

j
jj∫ ∑
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To assure that G(1) = 1, {φ j; j = 1,…,m} is chosen so each perturbation function, φ j, integrates to zero on 
the unit interval.  For the set of alternative hypotheses not to contain redundant representations, {φ j; j = 
1,…,m} must contain linearly independent elements.7  With no additional definition, the density associated 
with G can be written as: 

  g(z) = G'(z) = ( )∑
=

+
m

j
jj z

1

1 φα .  Also, Pr(xi < z) = G(z). (3) 

It can also be seen that H0 is nested in H1 if one allows for α j = 0,  j = 1,…,m.  This nesting is what allows 
the use of a Lagrange multiplier statistic, since the parameter space of the null hypothesis is a subset of that 
of the alternate hypothesis. 
 
Consider α = (α1,…,α m)' ≠ (0,…,0).  Then for any choice of nonzero basis functions {φ j}, g(z) is a 
function different than the uniform density.8  For α near the origin in ℜm, g(z) can be seen as a perturbation 

                                                        
5 With a continuous error distribution, the probability is zero that the maximum likelihood estimates will, in 
fact, equal the true parameter values, so equality of the sums of squares has probability zero. 
6 Such tests are also called “efficient score” tests, just “score” tests, or sometimes “Rao score” tests in 
honor of the first to suggest this type of test. 
7 As will be discussed later, any set of linearly independent functions that integrate to zero may be chosen 
which will be sensitive to different departures with different power. 
8 This is guaranteed by the linear independence of the elements of {φ j; j = 1,…,m}. 
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of the uniform density,9 using perturbation functions, {φ j; j = 1,…,m}.  The condition ( ) 1
1

0
=∫ dzzg  can 

easily be imposed by choosing {φ j; j = 1,…,m} such that ( )∫
1

0
dvvjφ  = 0. 

The likelihood function of interest is: 
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The jth first derivative, evaluated at α = 0, is: 
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, so the transpose of the “score” vector of first 

derivatives, evaluated at α = 0, for the LM Statistic is: 
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 A typical element of the Hessian matrix is: 
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evaluated at the null hypothesis, for the LM statistic is: 

( )
( ) ( )

( )
( ) ( )








=



































+

−
−=











∂∂
∂

−= ∑∑
∑

=
′=

=

=

′
=

′
=′

n

i
ijij

n

i m

k
ikk

ijij

jj
jj xxE

x

xx
E

L
EI

1
0

1
2

1

0

2

0

1

log
0 φφ

φα

φφ

αα ααα  

 = ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )∫∑∫∑ ′
=

=′
=

′= ==
1

0
1

1

0 0
1

0 ; dzzzndxxgxxxxE jj

n

i
iiijij

n

i
ijij φφαφφφφ

αα  

  
The LM statistic is s(0)'I(0)-1s(0).  Since the null hypothesis is a point of dimension zero in ℜm, this statistic 
is asymptotically distributed as a χ2(m) as n increases to infinity. 
 
The finite sample distribution for various values of n and m should be tabulated by Monte Carlo simulation.  
It is the intent of this further study to do so for the benefit of future researchers.  For a given n, as m is 
increased, the power of the test relative to specific alternative distributions will increase.  It is anticipated 

that m should be an increasing function of n.  McCulloch (1971) suggests m ≈ n , whereas Li (1997) 
suggests m = an2/5.  There is expected to be a tradeoff between relative proximity to the χ2(m) distribution 
and power of the test. 
 
Two common estimators of the Fisher information matrix10 are the local information matrix (the negative 
of the empirical Hessian of the log likelihood function) and the Outer Product of the Gradient Estimator 
(OPG).  Both estimators are consistent estimators for the Fisher information matrix.  A typical element of 
the local information matrix is, evaluated at the null hypothesis is: 

                                                        
9Many features, methods of calculation, and inferences of the Pearson χ2 test, the Neyman Ψ2 test (to be 
discussed at the end of this section), and the proposed spline test are parallel.  The differences in the tests 
are centered on the choice of a basis of perturbation functions. 
10 See for example Davidson and MacKinnon (1993) or McCulloch (1999) 
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The OPG estimator is also an empirical estimator.  It is based on the contributions to the gradient matrix, a 

typical element of which is: 
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.  Although in this case the estimators turn out to 

have the same form, that is not always the case.  In general, since the Hessian and the OPG depend on the 
sample rather than the expectation, there is additional error included that inherently makes inferences 
poorer than if the Fisher information matrix can be computed. 
 
There are two technical points to discuss.  The first of these is a requirement that the parameter space for 
the null hypothesis is not on the boundary of the parameter space for the alternative hypothesis.11  
Intuitively, α = 0 is an interior point of the parameter space, since at α = 0, g(z;α) = 1, for all values of z on 
the unit interval; and, evidently, under the null hypothesis, there is a local maximum at α = 0.  A more 
formal proof follows. 

Proof.  Since φ j integrate to zero, g(z;α) will integrate to one regardless of the choice of α.  So it is 
sufficient to show that a neighborhood exists around α = 0 such that g(z;α) ≥ 0, for all z.  Consider 
ι = (ι1,…,ιm) with ι j > 0,.  For each value of z, φ j(z) is bounded above by 1 and bounded below by 

-¼12, ∀j, ∀z.  So, a choice of ι j such than |ι j| ≤ m
1 , j = 1,…,m will suffice.  So, g(z;ι) = 1 + ι'ϕ(z) 

where ϕ(z) = (φ1(z),…, φm(z))'.  This expands to ( )∑
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1 φι  which cannot be greater than 2 nor 

less than 0.  So, g(z;ι) for any such selected ι is a density.  Next, it will be shown that the values of 
α that allow g to remain nonnegative are in a convex set in ℜm.  With that established, g(z;tι), for t 
∈ [0,1], must also be a density.  So, the null hypothesis is an interior point of the unrestricted 
parameter space. 
  

The second point of note is that g(z;α), as has been stated, is not a probability density function for some 
choices of α.  Although care was taken in the construction of g so that it would integrate to one over the 
unit interval, some choices of α could cause g to be negative over some portion of that interval.  Were we 
constructing a likelihood ratio statistic, this would be more troublesome, since the maximum likelihood 
estimate of α would have to be constrained to choices that allowed g to be a legitimate density function.  It 
is expected that for many problems, an unconstrained13 maximum likelihood estimator may not even 
exist.14 However, the Lagrange multiplier statistic does not require calculation of the unconstrained 
maximum likelihood statistic.  It merely requires a comparison of the gradient (roughly, slope) relative to 
the Hessian (roughly, curvature), evaluated at the null hypothesis.  If the judgment is that the gradient is 
near enough to zero, then the null is not rejected.  Nearby α’s to the α = 0 point of the null hypothesis will 
                                                        
11 See Rayner and Best (1989), p. 34. 
12 The upper bound is easy to calculate.  The lower bound is determined by the following:  

φ j(z) = ( )dvvj∫−
1

0
ψ  between 0 and 2

3
−
−

m
j , and is evaluated to be 

14
2
3

4
1

2
3)(

−
−−

−−−
m

jm
jz which must be greater 

than -¼ . 
13 Since g is constructed to integrate to 1 over the unit interval, choices of α that allow g to be negative over 
regions of the unit interval that do not contain data allow the “likelihood” function to increase, possibly 
without limit, over regions that do contain data, which would cause the function to be unbounded.  It should 
also be noted that some non-density g’s will cause the “likelihood” to be negative, if an odd number of 
observations occur in the region on which g is negative. 
14 A constrained likelihood will exist depending on the choice of basis functions. 
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be densities as will be shown more formally relative to the previous technical point addressed.  In fact, all 
the g(z;α) that are legal densities are near one another in the sense that the values of α that allow g to 
remain nonnegative are in a convex set in ℜm. 

Proof.  Let α = (α1,…,αm)' ∈ ℜm, ϕ(z) = (φ1(z),…, φm(z))'.  Assume the contrary:  at least one of 
the densities is not in a common convex region of ℜm.  Then there must be at least one function 
g(z;ω) that becomes negative at some point z0 ∈ [0,1], such that ω is a convex combination15 of ξ 
and ζ, where g(z;ξ) and g(z;ζ) are nonnegative everywhere on the unit interval.16 

So, g(z0; tξ + (1-t)ζ) = 1 + ( tξ + (1-t)ζ)'ϕ(z0) < 0 
⇒  tξ'ϕ(z0) + (1-t)ζ'ϕ(z0) < -1 
Since g(z0;ξ) = 1 + ξ'ϕ(z0) ≥ 0 and g(z0;ζ) = 1 + ζ'ϕ(z0) ≥ 0, 
tξ'ϕ(z0) + (1-t)ζ'ϕ(z0) ≥ -t – (1-t) = -1, which is a contradiction, 

So, the assumption the g(z;ω) that becomes negative at some point z0 ∈ [0,1] is impossible and, thus, the 
densities are in a convex region of ℜm. 
 
6.  Spline Lagrange Multiplier Test for a Uniform Distribution.  It is required that 

( )∫
1

0
dvvjφ  = 0; one way of assuring this is to choose any set of functions {ψj} that are integrable over 

[0,1] and with ψ j(z) = Ψj'(z), and define φ j(z)= ψ j(z) - ( )∫
1

0
dvvjψ , since ( ) dvduuv jj∫ ∫ 



 −

1

0

1

0
)( ψψ  = 

( ) ( )[ ]{ } 1

0

1
0

=

=

=
=

Ψ−Ψ
v

v

u

ujj uvv   = Ψj(1) − [Ψj(1) − Ψj(0)] − Ψj(0) = 0 . 

 
If we wanted to define a cubic spline, we could, for example, define 

( )








=







−
−

−

=
=

mj
m

j
z

jz
z

j

j ,,4,30,
2

3
max

2,1
3

K
ψ . 

The bottom functional form can be visualized as translating the function z3+, such that its origin is at each of 
the set of points {0, (m-2)-1, 2(m-2)-1,…, (m-3) (m-2)-1,1}, where  

  






<
≥

=+

00

03
3

z

zz
z , the positive portion of z3. 

The value, first derivative and second derivative of the ψ j’s are zero at 
2

3

−
−

m

j
, where the positive portion 

of the function begins; so, the addition of a multiple of ψ j  to a cubic function (or to a different cubic 
spline) results in a cubic spline.  Thus, this set of ψ j’s form a basis for cubic splines with equidistant knots 
on [0,1].17 
 
It appears that, using the cubic spline basis, the Fisher information matrix can be calculated directly, so 
reliance on estimates in this case is unnecessary.  The φ’s that are in the integrand of the typical element of 
this Fisher information matrix are cubic polynomials over part of their range and constant functions over 
the other part.  So, it will only be necessary to integrate zero-degree, cubic and sextic polynomials.   
It is necessary to evaluate linear, quartic and septemic polynomials at zero, one, and all knotpoints.    
 
Some benefits and concerns of this type of basis will be presented in the next section. 
                                                        
15 ω = tξ + (1-t)ζ for some t ∈ [0,1] 
16 ω,ξ, and ζ are all choices of α ∈ ℜm 
17 A spline is a function of a given number m of piecewise polynomials (or some other general function) of 
a given degree n, each defined on a subset of a range, connected at m-1 points in the range, called nodes or 
knots, such that the values and derivatives up to degree m-1 of consecutive polynomials are identical at the 
nodes.  Thus, cubic splines require values and first and second derivatives of consecutive cubic 
polynomials to be equal at the knots. 
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There is nothing magic about the selection of cubic splines over quadratic or linear splines.  In fact even an 
exponentiated spline, using expressions of the form “exp(αjφj)” in the alternative hypothesis, may be a 
reasonable basis for a test.  The choice against exponentiated splines is a matter of simplifying some of the 
calculations, since a normalizing constant that would be a possibly complex function of α would be 
necessary so that functions such as g would integrate to one over the unit interval.  Quadratic and cubic 
splines are more aesthetic than linear splines in constructing likely alternative densities in that their knots 
are not discernible since the first derivatives of consecutive polynomials are equal.  Cubic splines perhaps 
are to be preferred to quadratic splines since they are allowed to bend twice in a subinterval so they may be 
better at imitating the tails of some alternative distributions, but that characteristic may be at the expense of 
some other desired feature. 
 
At this point, it can be noted that the Pearson χ2 test is equivalent a zero-degree spline GFT for a 
continuous distribution.  Recall the structure of the hypotheses: 

H0:  pj = pj0 , j = 1,…,m+1 vs.  H1:  Not H0 
If each of the pj0 are set to a constant p, then H0 becomes the Uniform distribution. So a random sample, x = 
(x1,…,xn)'  from an unknown distribution F(X) can be tested using:   
  H0:  X ~ U(0,1) vs. H1:  X ~ G(z) 
  where g(z) can be of the form of equation (3) in Section 5, H1: 

   g(z) = ( )∑
=

+
m

j
jj z

1

1 φα ,  where, ( )
[ )

[ ]









∈−
∈

= +

++
−

otherwise0

1,1

,z1

1

11m
1j

m
m

m
j

j zzφ . 

This ZSLM (Zero-degree Spline Lagrange Multiplier) test statistic would be formed in the same way as 
that of the CSLM, by using the score vector and Fisher information matrix indicated by the log likelihood 
function: 

Score:  ( ) ( ) ( )







=′ ∑∑

==

n

i
im

n

i
i xxs

11
1 ,,0 φφ K , a typical element of which would be  

(nj - nm+1), where nj is the number of observations in the jth bin, or in the interval [ 11
1 , ++

−
m

j
m
j ) and nm+1 is the 

number of observations in the last bin, or in the interval [ 1,1+m
m ]. 

 

A typical element of the Fisher information matrix is ( ) ( ) ( )∫ ′′ =
1

0
0 dzzznI jjjj φφ , so diagonal elements 

are 1
2
+m
n and off-diagonal elements are 1+m

n .  Such a matrix is easy to invert, with the inverse’s diagonal 

elements being n
m and the off-diagonal elements equal to n

1− . 

 
7.  B-Spline Basis.  The simple cubic spline basis pictured below with seven members also has a Fisher 
information matrix that is poorly conditioned for inversion for large m.  The seventh member is barely 
visible ranging from a minimum value of -0.0004 to a maximum of 0.0076 which would necessitate that its 
coefficient might be 2 to 3 orders of magnitude greater than a coefficient from one of the first few basis 
members.  The difference in magnitude increases greatly as m increases. 
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Chart 4 
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Another basis for splines, typically called B-splines (see Judd, p. 227) and the one that is used in the test, is 
presented below.  It has the advantage that all the basis members are of the same order of magnitude and 
the Fisher information matrix will be dominated by a strong diagonal and be nearly sparse.  The linear 
spline matrix will be nearly tridiagonal, the quadratic spline matrix will have larger values on the main 
diagonal plus the four diagonals nearest the main diagonal, while the cubic spline matrix will have its 
largest values on the seven main diagonals.  As such, this choice of bases is much better conditioned for 
inversion of Fisher information matrices and for accumulating the corresponding scores. 
 
In general, B-splines of order k (k=1 corresponding to linear splines, k=2 corresponding to quadratic 
splines, …) require k+1 basis functions for the first segment, with the requirement of adding one basis 
function for each additional segment.  However, the splines that we are interested in have a requirement of 
integrating to zero over the unit interval.  Consequently, we can do with one fewer basis function. 
 
Linear B-spline functions look like “tent” functions increasing linearly from zero to a maximum from one 
knot point to the next, then decreasing from that maximum back to zero.  Since this application requires the 
functions to integrate to zero on [ 0 , 1 ], these “tents” will be translated downward so that some of their 
range will be negative. 
 
The functional form for the linear spline basis with m equal segments (and m+1 knots) is: 
 

 ( ) ( ) 1,,1,0,111 −=−= micxx iii Kψφ , where 

 ( )








≤≤−
≤≤−

= +++

+

otherwise0

if

if
212

1

1
m

i
m

i
m

i
m

i
m
i

m
i

i xx

xx

xψ  and  
{ }







−=

−∈
=

1if

2,,1,0if

2

2

2
1

1
1

mi

mi
c

m

m
i

K
. 

It must be understood that the functions need not be defined outside the unit interval.  For ease of 
exposition, that contingency is ignored.  For example, the second segment of ψm-1

1 by the above definition 
is defined on the interval [1, (m+1)/m] but is unnecessary for this application. 

If the segments are unequal in length, one can substitute {x0 ,  x1 ,  … ,  xm-1} for { }1,,1,0 −= mi
m
i K   in the 

above formula, where x0 and  xm are zero and one while x1 ,  x2 ,  … ,  xm-1 are the desired knot points. 
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The formula for quadratic splines is a bit more complicated with three main segments per basis function.  In 
addition, there must be one more function than in the linear basis for the same number of segments; so with 
m basis functions, one can describe only m-1 segments, and m knots.  
  

( ) ( ) 2,,1,0,1,222 −−=−= micxx iii Kψφ , where 

( )

( )
( )( ) ( )( )
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
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
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xψ  and  

( )
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
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. 
The formula for cubic splines has four main segments per basis function and can describe m-2 segments 
and the corresponding m-1 knots with m basis functions.  
  

( ) ( ) 3,,1,0,1,2,333 −−−=−= micxx iii Kψφ , where 

( )
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The first seven members of the basis for cubic B-splines defined above is pictured below: 
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Chart 5 

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 
 
Starting from the left, the first and sixth basis functions contain only two major segments (not including the 
constant segment).  The second and fifth functions contain three major segments, the third and fourth  
functions are the only ones that contain all four major segments, while the seventh function contains only 
one major segment. 
 
8.  Neyman’s ΨΨ2 test. A GFT to which the CSLM is also closely related would be Neyman’s Ψ2 test.18  
Neyman constructed an alternative hypothesis of order m (to a null of a uniform random variable on [0,1] ) 

to be gm(xi;α) =  ( ) ( )












−∑
=

m

j
ijj Kx

1

exp απα , 0 < y < 1,  m = 1,2,…  where K(α) is the constant necessary 

for gm to be a density, and the πj are orthonormal polynomials of degree j that integrate to zero on the unit 
interval.  As in the general case, the null hypothesis is that α = 0.  With the exponentiation, there is no 
problem with gm(xi;α) taking negative values.  The normalizing constant, which is a function of the entire α 
vector, may be replaced with another normalizing constant (e.g., C(α)) outside and in front of the 
exponentiation function.  Neyman’s test statistic, which is asymptotically χ2(m) is 

Ψ2
m=

( )
∑∑
==

=
n

i

ij
j

m

j
j

n

y
UU

11

2  where
π

 .  He expected that values of m of 4 or 5 would be sufficient to test a 

large enough class of alternatives.  Neyman’s test statistic was a likelihood ratio test statistic rather than a 
Lagrange multiplier statistic.  Since Neyman thought an m of 4 or 5 would be sufficient, it was not 
necessary in practice to compute K(α) for larger values of m.  To change this to a Lagrange multiplier test 
with possibly larger values of m, which is concerned with perturbations only in the neighborhood of the 
null hypothesis, it will be convenient to simplify calculations by substituting a regular polynomial form in 
place of Neyman’s exponentiated polynomial. 

Using this structure,one definition could be: 

g(z) = ( )∑
=

+
m

j
jj z

1

1 φα ,  where, 
[ ]





 ∈−

= +

otherwise0

1,0
1

1 zz
j

j

jφ . 

 
The corresponding LM test statistic would be formed in the same way as shown in Section 5, by using the 
score vector and Fisher information matrix indicated by the log likelihood function: 

                                                        
18 See Rayner and Best (1989), p.7 and p.46-48.  The choices of indices, variable and parameter names 
have been changed to show the parallel with the CSLM and ZSLM. 
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Score:  ( ) ( ) ( )
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1 ,,0 φφ K , a typical element of which would be  

∑
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1 1
.  A typical element of the Fisher information matrix is ( ) ( ) ( )∫ ′′ =

1

0
0 dzzznI jjjj φφ , or 

)1)(1)(1(
))((

1

0 1
1

1
1

+′++′+
′

=−−∫ +′
′

+ jjjj

jnj
dzzzn

j
j

j
j .   

 
One difference between the CSLM test and Neyman’s test is the expectation that the CSLM will detect 
differences that are local to a specific part of the unit interval.  Because Neyman’s exponentiated 
polynomials were defined over the entire interval, each polynomial affected the likelihood of each data 
point.  For this reason, polynomials may have to make more compromises since, in order to fit one point 
better, it may be necessary to fit other points worse.  It remains for future work to determine the different 
levels of power for specific alternatives.  The Pearson, Neyman, and spline tests are all asymptotically 
locally most powerful, unbiased tests against their design alternatives.  So, it is expected that each test will 
work better for alternatives that are of the form determined by their respective perturbing functions.  Tests 
with other bases of perturbing functions should be better for still other distributions. 
 
9.  Simple Polynomial Basis.  For practical computations with most software using double precision 
with 32-bit processors,  a basis of simple restricted polynomials, {xm – (m + 1)-1}, m = 1,2,…, will likely be 
difficult to work with as m increases since the rows of the Fisher information matrix are nearly linearly 
dependent. 

It is very easy to compute the cells of such matrices.  Each cell is ( )( )( )111 ++++ jiji

ij
 where i is the row 

index and j is the column index.  However, the determinants of the first 16 such matrices, using the 
determinant function of Microsoft Excel, are: 
 
 

Table 1 
 

1 2 3 4 5 6 7 8 
0.083333 0.000463 1.65E-07 3.75E-12 5.37E-18 4.84E-25 2.74E-33 9.72E-43 

 
9 10 11 12 13 14 15 16 

2.16E-53 3.02E-65 2.73E-78 2.37E-92 -5E-107 -8E-121 -1E-135 -2E-150 
 
The top rows indicate the number of columns (and rows) in the matrix and the bottom rows show the 
determinant.  The determinant is getting ever smaller at a faster and faster rate.  So, the hope of obtaining 
meaningful numerical inverses, without “infinite” precision, beyond the first few matrices is bleak. 
 
As an example, the 8×8 matrix shows a non-dominant diagonal and little difference between the rows: 
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Table 2 
 

0.083333 0.083333 0.075000 0.066667 0.059524 0.053571 0.048611 0.044444 
0.083333 0.088889 0.083333 0.076190 0.069444 0.063492 0.058333 0.053872 
0.075000 0.083333 0.080357 0.075000 0.069444 0.064286 0.059659 0.055556 
0.066667 0.076190 0.075000 0.071111 0.066667 0.062338 0.058333 0.054701 
0.059524 0.069444 0.069444 0.066667 0.063131 0.059524 0.056090 0.052910 
0.053571 0.063492 0.064286 0.062338 0.059524 0.056515 0.053571 0.050794 
0.048611 0.058333 0.059659 0.058333 0.056090 0.053571 0.051042 0.048611 
0.044444 0.053872 0.055556 0.054701 0.052910 0.050794 0.048611 0.046478 

 
Dividing the entries in each row by the average of the entries in that row yields the following near-singular 
matrix, which illustrates the ill-conditioning. 
 

Table 3 
 

1.30 1.30 1.17 1.04 0.93 0.83 0.76 0.69 
1.16 1.23 1.16 1.06 0.96 0.88 0.81 0.75 
1.07 1.18 1.14 1.07 0.99 0.91 0.85 0.79 
1.00 1.15 1.13 1.07 1.00 0.94 0.88 0.82 
0.96 1.12 1.12 1.07 1.02 0.96 0.90 0.85 
0.92 1.09 1.11 1.07 1.03 0.97 0.92 0.88 
0.90 1.07 1.10 1.07 1.03 0.99 0.94 0.90 
0.87 1.06 1.09 1.07 1.04 1.00 0.95 0.91 

 
10.  Orthogonal Polynomial Basis.  Alternatively, one can search for orthogonal polynomials so 
that the Fisher information matrix is diagonal with a uncomplicated inverse.  A recursive formula for 
Legendre-type polynomials is shown below.  The Legendre polynomials are typically defined on the range 
[ -1 , 1 ], so a change of variable is necessary so that the resultant polynomials are orthogonal on our range 
of interest, [ 0 , 1 ]. 
 
Let  p0(x) = 1  and  p1(x) = 2x – 1.  Then a recursive formula which will generate as many orthogonal 
polynomials as necessary on [ 0 , 1 ] is: 
 
  pm+1 = [(2m + 1)(2x – 1) pm(x) – m pm-1(x)] / (m + 1),     m = 1,2,…, 
 

with ∫[0,1] [ pm(x) ]2 dx = (2m + 1)-1, while, as designed, ∫[0,1] [ pm(x) ] [ pk(x) ]  dx = 0, if m ≠ k. 
 
The first few such polynomials are: 
 
 p2(x) = 6x2 - 6x + 1 
 p3(x) = 20x3 - 30x2 + 12x - 1 
 p4(x) = 70x4 - 140x3 + 90x2 - 20x + 1 
 p5(x) = 252x5 - 630x4 + 560x3 - 210x2 + 30x - 1 
 p6(x) = 924x6 - 2772x5 + 3150x4 - 1680x3 + 420x2 - 42x + 1 
 
Some of the features of these polynomials are, as scaled, all the coefficients are integers, the sign of the 
lead coefficient is positive, with alternating signs thereafter, and the constant term is always ± 1.  Each 
function ranges between ± 1 on the domain [ 0 , 1 ], with m – 1 extrema between zero and one. 
 
The graph below shows the first 7 members of the Neyman-Legendre type basis: 
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Chart 6 
 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

 
 
Although the Fisher information matrix is easy to compute, the other component of the Lagrange multiplier 
statistic, the score, can become problematic numerically as m increases because the relative magnitudes of 
the coefficients of the polynomials grows very rapidly.  As an example, for m = 24, the coefficients of the 
13th through 21st powers of x are on the order of 1016, whereas the constant term still has a coefficient on the 
order of 100.  Since most software carries only 16 significant digits in its calculations, even with the use of 
Horner’s rule of polynomial evaluation, 19 the score, which is the sum of a number (equal to the sample 
size) of such polynomial evaluations can be expected to pick up some significant errors for large m. 
 
However, one can still obtain reasonable numerical results for values of m beyond that which are obtainable 
with the simple polynomial basis. 
 
11.  Lagrange Multiplier Test for a General Completely Specified Distribution.  The 
goal in this section is to show that the LM Test for any distribution with known parameters is the same as 
that for the uniform distribution. 
 
To that end, consider a random sample ε = (ε 1 ,…,ε n)'  from an unknown distribution.  One would like to 
test: 
  H0:  ε i ~ F(z) vs. H1:  ε i ~ G(F(z)) 
 
where F is a completely specified distribution that is not U(0,1), and G(· ) is defined as before.  First one can 
show that F(ε i) = u i, a random variable with a uniform distribution over the range [0,1].20 Conversely, if 
the ui are not distributed uniformly over [0,1], then the ε i are not distributed according to F.  So, we can test 
to see if the ui are uniform, and this will be a test of the desired null hypothesis.  
 
For the general distribution test, one can use the transformed random variables: 
ui = F(ε i).  Under the alternative hypothesis,   
 Pr(ε i < z) = Pr(F(ε i) < F(z)) = Pr(ui < F(z)). 

                                                        
19The evaluation of a standard polynomial, pm(x) = cmxm + … + c1x + c0 by successive multiplications 
instead of exponentiation:   ((…(cmx + cm-1) x + cm-2) x + … + c1) x + c0 
20 The proof is well known but is included in the appendix for completeness. 
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Earlier, under the alternative hypothesis, Pr(ui < v) = G(v) (substituting ui for xi and v for z), where G is the 
same G as defined in Section 5. 
 ⇒  Pr(ε i < z) =  Pr(ui < F(z)) = G(F(z)). 

The density associated with G(F(z)) is g(F(z))f(z), by the chain rule, where g(z) = ( )∑
=

+
m

j
jj z

1

1 φα and 

f = F'. 
 
The likelihood and log-likelihood functions are: 

L(α;ε) = ( )i

n

i
i fug εα∏

=1

);( ⇒ log L(α;ε) = ( ) ( )i

n

i
i fug εα∑
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==
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i
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11

log;log εα . 

Since the second summation is constant relative to α, the first and second derivatives necessary to calculate 
the LM statistic are identical to those of the test for the uniform distribution.  Thus, one can simply use the 
transformed observations, F(ε i), with the test for the uniform distribution.  All tables and critical values that 
are suitable for the test of uniformity are also suitable for a general distribution. 
 
12.  Finite Sample Properties with a Completely Specified Distribution.  The Lagrange 
multiplier statistic has a limiting asymptotic distribution that is Chi-squared with degrees of freedom equal 
to m, the number of perturbation parameters.  Preliminary simulations suggest that for n ≥ 30 (sample size) 
m ≥ 5, and level of significance = 0.05, the convergence to the limiting distribution is quite rapid.  At the 
alluded values of m, n, and test size, the 95th percentile of the simulated distributions could not be 
distinguished from the 95th percentile of a chi-squared random variable.  If a lower level of significance is 
required, a higher sample size will be needed to use the chi-square approximation. 
 
Following are some typical results from a simulation with 9999 repetitions21: 
      

Table 4     
 
m = 5, n = 30  
      Size         Pearson  Neyman   Linear    Quad     Cubic     (χ2

5)−1(1−size) 
 
  0.0005      22.40     26.75     25.35     25.37      26.71     22.11   
   0.0010      20.80     23.09     21.00     23.56     22.93     20.52 
   0.0050      16.40     18.74     17.50     18.11     18.46     16.75 
    0.0100      14.80     15.89     15.48     15.61     15.78     15.09 
    0.0250      12.80     12.96     12.96     12.80     12.91     12.83 
    0.0500      10.80     11.03     10.99     10.97     11.03     11.07 
     0.1000      9.200     9.112     9.157     9.095     9.154     9.236 
 
 

                                                        
21 In this study the number of simulation repetitions is consistently chosen to be 10h-1 where h is an integer, 
rather than 10h, so that the size (Type I error) of the tests that use the simulated results will be more 
accurate.  Then for a given size (ξ), assuming that 10h(1- ξ) is an integer, the order statistic with the index 
10h(1-ξ) can be used as the critical value.  We could use 10h instead and interpolate between the integers 
immediately above and below (10h+1)(1-ξ) to get to the mixed number (10h+1)(1-ξ).  However, this 
involves one more calculation.  It also involves an assumption that the c.d.f., which may be unknown, is 
linear, at least near where the critical order statistics are expected to be.    Although the difference from 
linearity may be slight if the number of simulations is great enough, it is not necessary to make such an 
assumption with the proper selection of the number of repetitions. 
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m = 5, n = 100  
      Size         Pearson  Neyman   Linear    Quad     Cubic     (χ2

5)−1(1−size) 
 
  0.0005      23.12     23.58     23.65     24.80      24.29     22.11   
   0.0010      21.44     21.12     21.40     21.08     21.25     20.52 
   0.0050      17.00     17.13     16.81     17.02     17.05     16.75 
    0.0100      15.20     15.24     14.99     15.21     15.19     15.09 
    0.0250      12.80     12.94     12.97     12.74     12.89     12.83 
    0.0500      11.12     11.18     11.16     11.21     11.20     11.07 
     0.1000      9.200     9.333     9.307     9.343     9.327     9.236 
  
m = 10, n = 30  
      Size         Pearson  Neyman   Linear    Quad     Cubic     (χ2

10)−1(1−size) 
 
  0.0005      32.33     42.76     31.76     38.23     40.41     31.42   
   0.0010      29.40     36.19     30.93     32.62     35.93     29.59 
   0.0050      25.00     29.42     26.39     27.28     27.64     25.19 
    0.0100      22.80     26.24     24.24     24.25     24.95     23.21 
    0.0250      20.60     21.49     20.63     20.80     21.19     20.48 
    0.0500      18.40     18.74     18.34     18.56     18.79     18.31 
     0.1000      16.20     16.03     15.91     16.01     16.03     15.99 
 
m = 10, n = 100  
      Size         Pearson  Neyman   Linear    Quad     Cubic     (χ2

10)−1(1−size) 
 
  0.0005      32.88     36.86     34.12     34.28     35.34     31.42   
   0.0010      31.78     31.72     30.71     31.46     31.71     29.59 
   0.0050      26.28     26.46     25.95     25.69     25.84     25.19 
    0.0100      24.08     23.73     23.87     23.68     23.59     23.21 
    0.0250      20.78     20.73     20.67     20.64     20.79     20.48 
    0.0500      18.36     18.48     18.37     18.31     18.31     18.31 
     0.1000      15.94     16.20     16.11     16.26     16.23     15.99 
 
With model parameters, the exact size in finite samples will be dependent on model characteristics 
including regressors, if any; however, the rapid convergence exhibited by the case with no model 
parameters suggests optimism that tests may likely be of approximately correct size when using a chi-
squared distribution, with at least a moderate sample size. 
 
13.  LM Test for a General Distribution with Estimated Model Parameters.  In this 
section, we seek to expand the scope of possible uses for the LM test.  We still wish to consider a random 
sample ε = (ε 1 ,…,ε n)'  from an unknown distribution.  Again, we would like to test: 
  H0:  ε i ~ F(z) vs. H1:  Not H0. 
However, now we do not know the full specification of F; i.e., F = F(z;γ), so Pr(ε i < z) = F(z;γ), where γ is a 
vector of parameters describing the error distribution.  For a Gaussian distribution, γ = (µ,σ2); for a stable 
distribution, γ = (a,b,c,d)22; for a generalized error distribution, γ would be a vector including a scale 
parameter and an exponent; and for the Student-t distribution, γ could be the scale and degrees of freedom, 
to name four examples.23 
 To complicate matters just a bit more, we would like to explore the case in which our random 
sample, ε = (ε 1 ,…,ε n)', is a set of unobserved variables defined by a possibly non-linear regression form: 

   yi = h(Xi;β) + ε i ,   i = 1,…,n 

                                                        
22 More often, the stable parameters are known as (α,β,γ,δ) or (α,β,c,δ) but unused symbols are becoming 
scarcer, so the Latin letters are used to avoid notational abuse. 
23 The use of a likelihood function that contained conditional densities could allow the estimation of 
conditionally dependent error distributions such as ARIMA, ARCH, or GARCH distributions. 
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where yi is the ith observed dependent variable, Xi is a row vector  of known constants  (or is uncorrelated 
with the vector of ε’s), β is a vector of unknown coefficients, with function h(Xi;β ) being possibly non-
linear. 
 
One could estimate θ = (β',γ')' by maximum likelihood and form estimates of the ε i for testing as in the 
earlier tests with completely specified distributions.  However, this would involve using residuals, without 
taking into consideration possible changes in the model parameters. 
 
Instead, one could resort once again to a LM approach; but, this time, one will have to estimate all the 
parameters in θ simultaneously and evaluate LM statistic at the null hypothesis, α = 0, based on the 
selected parameterized distribution, F(z;γ). If θ has dimension K and α still has dimension m, the LM 
statistic will indicate whether the m-dimensional gradient is significantly different than zero relative to the 
(K+m) × (K+m) dimensional Hessian.  The potential improvement in the log likelihood function from its 
value at the null hypothesis is composed of the improvement due to the change in the error distribution 

measured by the change in α and the improvement due to the change in θ.  Using a θ̂  that is best suited to 
F1 to test whether F1 or F2 is the better error distribution will bias a test towards F1, whereas using matched 

sets of ( 1̂θ ,F1) and ( 2θ̂ ,F2) to determine which set better describes the data allows for a fairer test. 
 
The score vector for the LM statistic is of dimension K + m, with the first K elements being zero, since 
these will measure the partial derivatives at the maximum likelihood estimates of θ.  The Fisher 
information matrix will be of dimension (K+m) × (K+m), and may for some models be quite difficult to 
compute.  For this endeavor, one may choose to estimate this by an alternate method, with consistent 
estimators based on the empirical Hessian or the OPG estimator. 
 
Since the difference in dimension of the null and alternative hypotheses is m, once again, the LM test 
statistic will be asymptotically χ2(m).  The finite sample critical values will be dependent on the model and 
the specific regressors, but can be computed if need be by Monte Carlo simulations. 
 
14.  An Example with Model Parameters.  To illustrate the test, we have used the monthly 
returns on the CRSP value-weighted index, including dividends, for the period 1/53-12/92 as described in 
McCulloch, 1997. The following model is estimated under the assumption of independent, identically 
distributed symmetric stable errors, by computing maximum likelihood estimates of the unknown 
parameters: 
 

 yi = µ + εi ,  ( )0,,0,~ caS
iid

iε  
 
where S is the stable cumulative distribution function, a is a shape parameter and c is a scale parameter of a 
symmetric stable random variable.  In the special case where a = 2, this random variable is a normal with 
mean zero and variance 2c2.24   Please note that µ  is a location parameter but not necessarily a mean, since 
the first moment of a non-Gaussian stable distribution with a ≤ 1 does not exist.  With the symmetric stable 
distribution, this parameter is always the median of the distribution. 

Fitting the above model by maximum likelihood,25 yields the following results: 

 
 
                                                        
24 See the Appendix and  Samorodnitsky and Taqqu (1994) for more information about stable non-Gaussian 
random variables. 
25 This was accomplished using the SMSTRG Symmetric stable regression package available at 
http://economics.sbs.ohio-state.edu/jhm/jhm.html., as described in (McCulloch, "Linear Regression with 
Stable Disturbances," in R. Adler, R. Feldman, and M.S. Taqqu, eds., A Practical Guide to Heavy Tails 
(1998).  
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          Table 5 
 

 Symmetric Stable ML Estimates26 
        a =   1.8450   se     0.0658 
        c =   2.7113 
  log c =   0.9974   se     0.0433 
  log L = -1364.7445 
        µ =   0.6729   se     0.1840     

         n =   480 observations 
 
The results of the proposed GFTs, arbitrarily setting the number of parameters, m, equal to 12 for the sake 
of illustration, and using equidistant knots for the spline tests, yield: 
 

H0:  f(εi) ~ s(α,0,c,0) vs. H1: f(εi) ~ G(S(a,0,c,0);α), where the density associated with G is 

( )( ) ( ) ( )( ) ( )0,,0,0,,0,10,,0,;0,,0,
12

1

cascaScascaSg
j

jj 









+= ∑

=

φαα  where s(a,0,c,0) is the probability 

density function that corresponds to S(a,0,c,0). 
 
The results of such tests yield: 
    Table 6 
 
                Statistic  1-χ2

12(stat) 

Pearson          12.61    0.6321  
Neyman-Legendre polynomial      17.23    0.3051  
Linear Spline         17.39    0.2963  
Quadratic Spline         18.26    0.2493  
Cubic Spline         17.12    0.3119  

 
With conventional levels of significance, one cannot reject the null hypothesis, that the errors are 
independent and identically distributed as a symmetric stable distribution.  Note that this is not the same 
thing as accepting the null hypothesis.  It may be that other well-known parametric distributions can fit the 
data as well, or that 480 observations are not sufficient to generate the power to reject the hypothesis of 
symmetric stable errors. 
 
If we would consider the same test with another leptokurtic distribution, such as the generalized Student-t 
distribution,27 we can get maximum likelihood estimates as follows: 
 
 
 
 
 
 
 
 
 
 
                                                        
26 The application actually fit the natural logarithm of c, rather than c, so standard errors are applicable to 
log c rather than c itself.  
27 The following Student-t distribution is generalized so that it has a scale parameter, c:  
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   Table 7 
 

Generalized Student-t28 ML Estimates29 
    1/df =  0.1552   se     0.0413 
      df =   6.4434    
        c =   3.5310 
  log c =   1.2616   se     0.0524 
  log L = -1363.7234 
        µ =   0.7164   se     0.1836     

         n =   480 observations 
 
Employing the same hypothesis testing procedure as before yields 
 
    Table 8 
 
                Statistic  1-χ2

12(stat) 

Pearson          15.33    0.4278  
Neyman-Legendre polynomial      15.36    0.4257  
Linear Spline         17.81    0.2728  
Quadratic Spline         18.76    0.2247  
Cubic Spline         17.42    0.2945  

 
So, the test does not reject the null hypothesis of a generalized Student-t distribution either. 
 
Before exploring the difference and similarities between the maximum likelihood estimates of the 
symmetric stable parameters and the generalized Student=t parameters, it would be interesting to apply this 
test to the normal distribution.  The normal or Gaussian distribution is a particular case of a symmetric 
stable distribution and is the limiting Student-t distribution as the number of degrees of freedom increases 
to infinity. 
 
   Table 9 
 

Gaussian ML Estimates 
        µ   =    0.5554   se     0.1950     

         σ2    =  18.2487   se     1.1780  
        n   =  480 observations 

   log L  = -1378.0735 
 
                Statistic  1-χ2

12(stat) 

Pearson          19.96    0.1315  
Neyman-Legendre polynomial      30.55    0.0064  
Linear Spline         26.88    0.0199  
Quadratic Spline         26.62    0.0216  
Cubic Spline         27.79    0.0152  

 
So, for all but the Pearson tests, the hypothesis of Gaussian errors is rejected at conventional significance 
levels.  The Pearson test simply looks at the proportion of observations falling in 12 equal probability 
regions of the distribution.  When observing the residuals from the normal maximum likelihood estimation, 
only 26 out of the 480 observations (or 5.4%) lie more than 1.96 standard deviations from the mean. Since 
one would expect only 5% of the observations in this region under the null hypothesis, coupled with the 

                                                        
28 The application actually fit the reciprocal of the degrees of freedom, so standard errors are applicable to 
the reciprocal rather than the estimated value of the degrees of freedom. 
29 Estimates were determined through a modification of SMSTRG, substituting the Student-t density and 
distribution. 
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fact that the Pearson test does not depend upon a residual's relative position in a region, this is not a 
surprising result. 
 
15.  A Preliminary Investigation of Sensitivity.  In the last section it was seen that neither 
symmetric stable nor Student-t errors could be rejected by the given test of the data.  A comparison of the 
distribution functions of a symmetric stable distribution and a Student-t distribution with parameters 
determined by maximum likelihood estimation of the CRSP data shows that the distributions are very 
close.  The following graph was assembled by choosing 480 probabilities from 1/481 to 480/481for a 
comparison of typical samples from the two distributions of the same sample size as the data.  The 
ordinates were determined by applying the respective inverse distribution functions to the vector of 
probabilities. 

Chart 7 
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An expanded view of the tail region (48 points) allows the slight differences between the distributions to be 
discerned: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chart 8 
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The next test uses generated series of 480 observations from a Student-t distribution with 6.4434 degrees of 
freedom, a scale factor 3.5310, with a location parameter of 0.7164.  Not surprisingly, at this number of 
observations, similar tests to those previously employed do not allow summary rejection that the series of 
Student-t random variables were in fact a set of symmetric stable random variables.  The maximum 
likelihood estimates of the earlier  symmetric stable fitting of the CRSP data is included below for 
comparison.  
     Table 10 
 

   Series: Random Student-t       Series:  CRSP data 
   Random Seed 04579384 (hex) 
  

Symmetric Stable ML Estimates Symmetric Stable ML Estimates 
        a =   1.7814   se     0.0781                 a =   1.8450   se     0.0658 
        c =   2.7441            c =   2.7113 

      log c =   1.0094   se     0.0479    log c =   0.9974   se     0.0433 
   log L = -1384.4738       log L = -1364.7445 

          µ =   0.6325    se     0.1875              µ =   0.6729   se     0.1840     
        n =   480 observations          n =   480 observations 

 
                            Statistic  1-χ2

12(stat) 

Pearson          11.84    0.6911  
Neyman-Legendre polynomial        6.32    0.9738  
Linear Spline         20.16    0.1657  
Quadratic Spline         32.94    0.0048  
Cubic Spline         42.41    0.0002  

 
Prior to commenting on the above statistics, it may be instructive to view another simulation: 
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       Table 11 
 

  Series: Random Student-t        
   Random Seed 9F3D29E9 (hex) 
  

Symmetric Stable ML Estimates  
        a  =   1.7820   se     0.0773                  
        c  =   2.7914              

      log c  =   1.0265   se     0.0478     
    log L  = -1391.8818      

           µ  =   0.4416    se     0.1906                   
                       n  =   480 observations 
 
                            Statistic  1-χ2

12(stat) 

Pearson          21.55    0.1201  

Neyman-Legendre polynomial      22.48    0.0959  
Linear Spline         20.57    0.1511  
Quadratic Spline         19.25    0.2027  
Cubic Spline         17.65    0.2815  

 
Clearly, in the second series, one cannot reject that the series is symmetric stable.  The results from the first 
series are mixed, with strong rejections from the quadratic and cubic splines, but no rejections with the 
other tests. 
 
Increasing the sample size, while holding m constant at 12, with the above random starting points to 2400 
and 4800 still produced mixed results, while increasing the sample size to 10,000 produced rejections from 
all tests except the Pearson test.  Preliminary illustrative results for sample size 10,000 are shown below in 
Table 12. 

Table 12 
 

   Series: Random Student-t   Series: Random Student-t 
   Random Seed 04579384 (hex)   Random Seed 9F3D29E9 (hex) 
  

Symmetric Stable ML Estimates Symmetric Stable ML Estimates 
        a =   1.8325   se     0.0141                  a =    1.8627   se     0.0142 
        c =   2.6889            c  =   2.6996 

      log c =   0.9891   se     0.0093    log c =    0.9931   se     0.0093 
   log L =  -28417.7379     log L = -28289.9758 

          µ =    0.6668    se    0.0397             µ =   0.6904   se     0.0397    
        n =   10000 observations          n =   10000 observations 

 
 
          04579384                      9F3D29E9 
                                        Statistic 1-χ2

12(stat)             Statistic   1-χ2
12(stat) 

Pearson            9.67   0.8397     9.58 0.8452   
Neyman-Legendre polynomial      34.39   0.0030   39.08 0.0006 
Linear Spline         32.91   0.0048   28.41 0.0192 
Quadratic Spline         39.35   0.0006   35.97 0.0018  
Cubic Spline         41.28   0.0003   38.73 0.0007  
 
Although the data set in question has only 480 monthly returns, 50 years of daily returns would yield about 
12,500 observations, so it is not unrealistic that one could observe sample sizes of 10,000 or even larger.  
When daily data is used the returns become less independent and less identically distributed since there is 
more apparent volatility clustering, day-of-the-week effects in both mean and scale, holiday effects, end-of-
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year effects, among other complications.  However, the method shown here of maximum likelihood 
estimation allows these extra considerations to be estimated without biasing the results. 
 
Some studies use tick-by-tick Foreign Exchange rate data.  At that frequency, transaction costs start to 
become a major consideration, so the returns are difficult to analyze, but now more than ever samples 
might have 100,000 or even 1,000,000 observations.  So 10,000 may in some senses still be a “small” 
sample. 
 
16. Comparison to Naïve Residual Tests.  Many goodness-of-fit tests implicitly rely on residuals 
being distributed identically to the typically unknown error terms.  Unless the model parameter terms are 
known with certainty, most parameters must be estimated.  During that estimation parameters are chosen to 
fit the residuals as nearly as possible to the assumed error distribution.  The suspected result is that residual 
tests will tend to be biased towards acceptance of the null hypothesis. 
 
The symmetric stable case presented before can serve as an illustration.  The first table below shows, in the 
left column, relative levels of significance when the hypothesis tests take into consideration possible model 
improvement by considering changes the model parameters as well as changes in the error distribution.  
The right column shows levels of significance when the estimated model parameters are taken as fixed and 
only changes in the error distribution are considered.  The 90 tests are five tests each (Pearson, Neyman, 
and the three Spline tests) using from 3 to 20 free parameters to test the symmetric stable distribution. 
 

Table 13 
 

    Frequency of Tests by Level of Significance 
   Level of Significance Informed Test  Naïve Test 
               ≤ 0.05             3             1 
           0.05 – 0.10             1             0 
           0.10 – 0.15             0             1 
           0.15 – 0.20                             9                                        1 
           0.20 – 0.30                           24                                        8 
           0.30 – 0.40             32           30 
           0.40 – 0.50             8           28 
           0.50 – 0.60                             4                                      14 
           0.60 – 0.70                             3                                        1 
                                                   0.70 – 0.80            4             3 
           0.80 – 0.90             0             1 
           0.90 – 1.00                            1                                         2 
                 N/A                                 1*                                       0 
  
     Average Level of Tests 

     Informed   Naïve    Difference   
Pearson           0.45*      0.46*        0.01 
Neyman-Legendre        0.23        0.42          0.19 
Linear Spline             0.39        0.42          0.03 
Quadratic Spline          0.33        0.40          0.07 
Cubic Spline                  0.31        0.41          0.10 

 
*Eliminated a Pearson statistic that was negative; no Complement of the Inverse 
  Chi-Squared Distribution statistic is available.30 

 

                                                        
30 The procedure employed uses a hybrid proxy for the Fisher information matrix which is not guaranteed 
to be positive definite.  Some test-statistics can be negative.  The next section will elucidate this matter.  
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The frequency table shows that the naïve test tends to give a higher level of significance.  The average 
difference in the level of significance of the five types of tests is exhibited in the second part of the table.  
Again one can see a tendency for the naïve test to be more likely to accept the null hypothesis. 
 
17.  Comparison with Empirical Distribution Function Tests.31  Given a sample of size n, 
Y1 , … , Yn , and the corresponding order statistics, Y(1) , … , Y(n) , the empirical distribution function (EDF) 
can be defined as follows: 
 

 








∞<<
<<
<<∞−

= +

yY

YyY

Yy

yEDF

n

iin
i

)(

)1()(

)1(

1

0

)( ,    i = 1 , 2 , … , n - 1 

Many EDF tests have been around for half a century or more.  It seems natural to compare the previous 
results to these tests.  These tests have an assumption of a completely specified distribution.  When the 
parameters have been determined by some optimization method such as maximum likelihood, as discussed 
in the previous section, inferences are less accurate. 
 
The most common empirical distribution goodness-of-fit test is based on the Kolmogorov-Smirnoff (KS) 
statistic.  It seeks to look at the largest single difference between the assumed distribution, F(y) and the 
EDF, so it can be described as: 
 
 ( ) ( )yFyEDFKS

y
−= sup   

Two other common EDF tests are the Cramér-von Mises (CvM) statistic and an Anderson-Darling (AD) 
modification of CvM.  The CvM statistic is the integrated squared difference between the EDF and the 
assumed distribution.  The AD modification is based on the premise that one should examine the difference 
in the tails of the distributions more closely than the center of the distribution, which is accomplished by 
dividing by a function that takes its maximum value at the median of the distribution. 
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In the expressions above ( ) ( )[ ]yFUyF =*  where U(y) is the distribution function for a uniform random 
variable on the unit interval.  By using this transformation and sample size adjustment factors for KS and 
CvM, standard tables of critical values can be employed.  In the table below, “Modified” refers to a 
function of the statistic and the sample size so that standard tables can be employed in determining the 
significance level of the statistic.32  Significance levels are calculated using reciprocal interpolation of the 
table in D’Agostino and Stephens (1986). 
 
The results for the CRSP data follow: 
 
     Table 14 
 
  Kolmogorov-Smirnov 

               Stable                Student              Gaussian 

                                                        
31 A source for the tables and descriptions of these EDF tests and others is D’Agostino and Stephens (eds.), 
Goodness-of-Fit Techniques, 1986, Chapter 4. 

32 Modified 




 ++=

nKs
nKSKS 11.012.0 .  Modified ( )( )

nnn
CvMCvM 16.04.0 12 ++−= .  For n ≥ 5, the AD 

statistic does not need any modification. 
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KS             0.039       0.039      0.053  
Modified       0.855       0.870      1.167  
Significance       >0.250                   >0.250       0.129     

 
 
Cramér-von Mises 
               Stable                Student              Gaussian 
CvM            0.099       0.097       0.305  
Modified       0.098       0.096       0.305  
Significance       >0.250                   >0.250    0.129     

 
Anderson-Darling 
               Stable                Student              Gaussian 
AD             0.793       0.813       2.046  
Significance       >0.250                   >0.250       0.083  

 
At conventional significance levels none of these tests would reject any of the posited distributions; 
however, the Gaussian tests appear to be in the weaker range of statistics indicating non-rejection. 
 
18.  More Accurate Results Expected in Future.   
 
The application of Lagrange multiplier tests relies crucially on the Fisher information matrix or some 
estimate thereof.  Especially with distributions such as the symmetric stable with no closed form for even 
its corresponding density function, numerical estimation of many of the components of the test statistic is 
necessary.  When the Fisher information matrix is unavailable, consistent estimators such as the negative of 
empirical Hessian or the outer-product-of-the-gradient (OPG) estimator become likely candidates for 
substitution.  When computing the Fisher information matrix the only stochastic aspect is the vector of 
maximum likelihood estimates.  The use of the empirical Hessian or the OPG estimators inherently imparts 
more noise to the tests.  And, per Davidson and McKinnon, the OPG estimator “often seems to be 
particularly poor.”33  Thus, if possible, numerical estimation of the Fisher information matrix is the 
preferred option. 
 
To determine the Fisher information matrix we require the expectation of the outer product of the gradients 
or the expectation of the negative Hessian.  
 
Given the general nested hypotheses test for the case with a vector of unknown model parameters, θ, 
 
 H0: yi ~ F(y;θ) vs. H1: yi ~ G[F(y;θ)], 
 
with the density for the alternative hypothesis being 
 

 g[F(y;θ)] f(y;θ), where ( ) ( )zzg j

m

j
jφα∑
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+=
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1 , 

 
the likelihood and log likelihood functions are: 
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The first derivatives of the log likelihood are: 

                                                        
33 Davidson and MacKinnon, Estimation and Inference in Econometrics, p. 266. 
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Evaluation at the maximum log likelihood of the restricted model, θθα ˆ,0 == , yields: 
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The second derivatives of the log likelihood may not be necessary if the Fisher information matrix can be 
computed directly by taking the expectation of the outer product of the gradients.  For completeness, if the 
calculation of the Hessian is necessary, the second derivatives are: 
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and, first differentiating with respect to αj, and then differentiating with respect to θk (for ease of 
calculation), 
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These expressions simplify greatly at the maximized log likelihood of the restricted model, θθα ˆ,0 == : 
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Thus, the full Fisher information matrix for the case with unknown model parameters is: 
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being a typical entry in that quadrant of the matrix. 
 

The off-diagonal elements can also be represented as ( )( ) ( ) ( )
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different looking expressions being equal as can be determined by integration by parts. 
 
It may be possible to perform the expectation integration for some distribution functions to get the Fisher 
information matrix directly.  But, in any case it is always reasonable to get an empirical Hessian, by 
substituting residuals from the restricted estimate for the unknown error terms.  All that is necessary to 
determine the mixed second derivatives is to (1) differentiate the chosen basis functions, (2) numerically 
evaluate the chosen distribution, using maximum likelihood estimates for parameters, at each residual, and 
(3) numerically differentiate the distribution function at each residual. 
 
The preliminary results in Tables 6, 8, and 9 are based on a hybrid proxy for the information matrix.  The 
hybrid matrix has some of its entries equal to those from the Fisher information matrix, some being entries 
from the negative of the empirical Hessian, and some being entries from the OPG estimator.  Since a 
consistent matrix estimator consistently estimates each entry in the matrix, such a hybrid must also be a 
consistent matrix estimator. 
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The makeup of typical hybrid proxy follows: 
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The upper left portion of the matrix measures the curvature of the log likelihood with respect to the model 
parameters.  For the stable and Student-t tests, a numerical estimate of empirical Hessian was used; for the 
Gaussian test, the actual Fisher information matrix was used. 
 
The lower right portion of the matrix shows the curvature with respect to the perturbation parameters in the 
density of the alternate hypothesis.  Given the basis functions chosen, exact analytical calculation of the 
Fisher information matrix was straightforward. 
 
The off diagonal elements are estimated via OPG estimation, which perhaps is the noisiest of the three 
methods. 
 
In addition to the noise, another inconvenient feature of this hybrid matrix is that it is not guaranteed to be 
positive definite.  Even though the test statistics are asymptotically chi-squared, they can be negative in 
finite samples. 
 
With numerical methods to estimate the Fisher information matrix these types of problems should be 
avoided. 
 
19.  Conclusion.  General purpose Lagrange multiplier goodness-of-fit tests can be used with economic 
and financial data to probe the distribution underlying the generation of the data.  Some parsimonious 
parametric distributions may be found that will aid inferences about levels of and relationships between 
economic variables.  Thus, asymptotically consistent estimates of parameters are possible without either 
presuming normality of error terms or using solely nonparametric techniques. In that regard, these new 
procedures can offer new answers to old questions. 
 
Unlike many goodness-of-fit tests, unknown model parameters can be estimated with the tests presented 
herein without prejudicing the tests.  Since these tests rely on maximum likelihood techniques, they are 
asymptotically most powerful tests against their designed set of alternatives. 
 
Spline models are more tractable than polynomial models with existing double precision software, but more 
work has to be done on power to determine whether tractability is offset by lower power in tests of interest. 
 
An illustration with model parameters was presented for illustration of test properties and contrasted with 
some common goodness-of-fit tests.  Rejection of the hypothesis of normal error terms was accomplished 
with the new tests but not with the old tests. 
 
Further study is necessary to determine advantageous strategies in increasing power of the tests against 
particular alternatives.  Uneven knot points and better estimation of Fisher information matrices are two 
such areas. 
 
 
Appendix.   
Stable random variables.  Stable distributions are those that have the property of being stable under 
addition.  The distribution of the sum of any number of independent random variables that are from a stable 
distribution will itself be stable.  The logarithm of the characteristic function of each stable random variable 
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shares the same form.34  Specifying the four-vector of parameters, (a,b,c,d), can identify a particular stable 
distribution.  The fourth parameter, d, is a location parameter and can, in a crude sense, be compared to 
some measure of average (mean, median, or mode); it is the mean for a > 1, and is the median and mode for 
b = 0.  It can take on any real number as its value. The third parameter (c) is a scale parameter, and can be 
likened somewhat to a variance, standard deviation, or range; it can take on any non-negative number with 
a c of zero indicating a degenerate distribution.  The second parameter, b, is a skewness index and can take 
on values between plus or minus one, inclusively; when b > 0 (< 0), the distribution is skewed to the right 
(left); when b = 0, the distribution is symmetric.  The first parameter, a, is called the exponent and can take 
on values on the range (0,2].  When a = 2, this is the special case of the normal distribution.  When 
a ∈ (1,2), the mean of the distribution is d; when a ∈ (0,1], the mean of the distribution is infinite.  The 
Cauchy distribution is a special case of the stable class of distributions and has b = 0 and a = 1.  The 
density of stable distributions cannot be represented in closed form except in the case of the Normal, 
Cauchy, and Lévy35, so the use of these distributions requires numerical applications such as are present at 
http://economics.sbs.ohio-state.edu/jhm/jhm.html, and http://academic2.american.edu/~jpnolan the home 
pages of J. Huston McCulloch and John P. Nolan, respectively. 
 
Proof: Transformation of General Distribution to a Uniform over [0,1].  For any ε i drawn from the 
distribution, there exists a u ∈ [0,1] such that ε i = F-1(u)36.  Let u be distributed according to some unknown 
function Ξ.  (Note for later use that F-1(u) is not defined for values outside [0,1].) 

 Pr(ε i ≤ z) = F(z)     (*) 
 Pr(ε i ≤ z) = Pr(F-1(u) ≤ z) = Pr[F(F-1(u)) ≤ F(z)]37 = Pr (u ≤ F(z)) 

Pr (u ≤ F(z)) = Ξ(F(z)), by definition.  This implies Ξ(F(z)) = F(z), from (*). 
 Substituting v for F(z), we have Ξ(v) = v.  So, ξ(v) = Ξ'(v) = 1. 
Thus, ξ is a uniform density over [0,1] and Ξ is the uniform distribution function over the 
same range. 

                                                        
34 See McCulloch (1996) 
35 Stable parameters of (½,1,1,0). 
36This is a bit informal, since not all distribution functions are strictly invertible.   F is non-decreasing so it 
is invertible except in regions where the density is zero.  However, in such regions, there will be no ε i for 
which we will require F-1. 
37 Since F is a non-decreasing function. 
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